ترغب بنشر مسار تعليمي؟ اضغط هنا

The Proper Motion of PSR J0205+6449 in 3C 58

120   0   0.0 ( 0 )
 نشر من قبل Michael F. Bietenholz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on sensitive phase-referenced and gated 1.4-GHz VLBI radio observations of the pulsar PSR J0205+6449 in the young pulsar-wind nebula 3C 58, made in 2007 and 2010. We employed a novel technique where the ~105-m Green Bank telescope is used simultaneously to obtain single-dish data used to determine the pulsars period as well as to obtain the VLBI data, allowing the VLBI correlation to be gated synchronously with the pulse to increase the signal-to-noise. The high timing noise of this young pulsar precludes the determination of the proper motion from the pulsar timing. We derive the position of the pulsar accurate at the milliarcsecond level, which is consistent with a re-determined position from the Chandra X-ray observations. We reject the original tentative optical identification of the pulsar by Shearer and Neustroev (2008), but rather identify a different optical counterpart on their images, with R-band magnitude ~24. We also determine an accurate proper motion for PSR J0205+6449 of (2.3 +- 0.3) mas/yr, corresponding to a projected velocity of only (35 +- 6) km/s for a distance of 3.2 kpc, at p.a. -38 deg. This projected velocity is quite low compared to the velocity dispersion of known pulsars of ~200 km/s. Our measured proper motion does not suggest any particular kinematic age for the pulsar.

قيم البحث

اقرأ أيضاً

PSR J0205+6449 is a young ({approx} 5400 years), Crab-like pulsar detected in radio and at X and {gamma}-ray energies and has the third largest spin-down flux among known rotation powered pulsars. It also powers a bright synchrotron nebula detected i n the optical and X-rays. At a distance of {approx} 3.2 kpc and with an extinction comparable to the Crab, PSR J0205+6449 is an obvious target for optical observations. We observed PSR J0205+6449 with several optical facilities, including 8m class ground-based telescopes, such as the Gemini and the Gran Telescopio Canarias. We detected a point source, at a significance of 5.5{sigma}, of magnitude i {approx} 25.5, at the centre of the optical synchrotron nebula, coincident with the very accurate Chandra and radio positions of the pulsar. Thus, we discovered a candidate optical counterpart to PSR J0205+6449. The pulsar candidate counterpart is also detected in the g ({approx}27.4) band and weakly in the r ({approx}26.2) band. Its optical spectrum is fit by a power law with photon index {Gamma}0 = 1.9{pm}0.5, proving that the optical emission if of non-thermal origin, is as expected for a young pulsar. The optical photon index is similar to the X-ray one ({Gamma}X = 1.77{pm}0.03), although the optical fluxes are below the extrapolation of the X-ray power spectrum. This would indicate the presence of a double spectral break between the X-ray and optical energy range, at variance with what is observed for the Crab and Vela pulsars, but similar to the Large Magellanic Cloud pulsar PSR B0540-69.
152 - L. Kuiper 2010
PSR J0205+6449 is a young rotation-powered pulsar in SNR 3C 58. It is one of only three young (<10,000 year old) pulsars which are so far detected in the radio and the classical X-ray bands, as well as at hard X-rays above 20 keV and at high-energy ( >100 MeV) $gamma$-rays. The other two young pulsars are the Crab and PSR B1509-58. Our aim is to derive the timing and spectral characteristics of PSR J0205+6449 over the broad X-ray band from ~0.5 to ~270 keV. We used all publicly available RXTE observations of PSR J0205+6449 to first generate accurate ephemerides over the period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profiles using data from RXTE PCA and HEXTE, and XMM-Newton EPIC PN. While our timing solutions are consistent with earlier results, our work shows sharper structures in the PCA X-ray profile. The X-ray pulse profile consists of two sharp pulses, separated in phase by 0.488(2), which can be described with 2 asymmetric Lorentzians, each with the rising wing steeper than the trailing wing, and full-width-half-maximum 1.41(5) ms and 2.35(22) ms, respectively. We find an indication for a flux increase by a factor ~2, about 3.5 sigma above the time-averaged value, for the second, weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of non-thermal origin, exhibiting a power-law shape with photon index Gamma = 1.03(2) over the energy band ~0.5 to ~270 keV. In the energy band covered with the PCA (~3-30 keV) the spectra of the two pulses have the same photon index, namely, 1.04(3) and 1.10(8), respectively.
We report the parallax and proper motion of millisecond pulsar J0030+0451, one of thirteen known isolated millisecond pulsars in the disk of the Galaxy. We obtained more than 6 years of monthly data from the 305 m Arecibo telescope at 430 MHz and 141 0 MHz. We measure the parallax of PSR J0030+0451 to be 3.3 +/- 0.9 mas, corresponding to a distance of 300 +/- 90 pc. The Cordes and Lazio (2002) model of galactic electron distribution yields a dispersion measure derived distance of 317 pc which agrees with our measurement. We place the pulsars transverse space velocity in the range of 8 to 17 km/s, making this pulsar one of the slowest known. We perform a brief census of velocities of isolated versus binary millisecond pulsars. We find the velocities of the two populations are indistinguishable. However, the scale height of the binary population is twice that of the isolated population and the luminosity functions of the two populations are different. We suggest that the scale height difference may be an artifact of the luminosity difference.
55 - A. De Luca 2002
We have measured the proper motion of the candidate optical counterpart of the old, nearby pulsar PSR B1929+10, using a set of HST/STIS images collected in 2001, 7.2 years after the epoch of the original FOC detection (Pavlov et al. 1996). The yearly displacement, mu=107.3+/-1 mas/yr along a position angle of 64.6+/-0.6 deg, is fully consistent with the most recent VLBA radio measurement. This result provides a robust confirmation of the identification of PSR B1929+10 in the optical band.
Our knowledge of the dynamics and masses of galaxies in the Local Group has long been limited by the fact that only line-of-sight velocities were observationally accessible. This introduces significant degeneracies in dynamical models, which can only be resolved by measuring also the velocity components perpendicular to the line of sight. However, beyond the solar neighborhood, the corresponding proper motions have generally been too small to measure. This has changed dramatically over the past decade, especially due to the angular resolution and stability available on the Hubble Space Telescope. Proper motions can now be reliably measured throughout the Local Group, as illustrated by, e.g., the work of the HSTPROMO collaboration. In this review, I summarize the importance of proper motions for Local Group science, and I describe the current and future observational approaches and facilities available to measure proper motions. I highlight recent results on various Milky Way populations (globular clusters, the bulge, the metal-poor halo, hypervelocity stars, and tidal streams), dwarf satellite galaxies, the Magellanic Clouds and the Andromeda System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا