ﻻ يوجد ملخص باللغة العربية
New photometric observations of the hierarchical eclipsing TY CrA system were taken in the optical with VYSOS6 and in the near-IR with SOFI and REMIR. They are the first observations showing the deep eclipse minimum of the pre-main sequence secondary in the near-IR. For the first time, the secondary minimum can be reliably used in the calculation of the O-C diagram of TY CrA. By now, the O-C diagram can be studied on a time basis of about two decades. We confirm, that the O-C diagram cannot be explained by the spectroscopic tertiary. For the first time, the light curve of the inner eclipsing binary is analysed in both optical and near-IR bands simultaneously. In combination with already published spectroscopic elements, precise absolute dimensions and masses of the primary and the secondary component are obtained using the ROCHE code. The inclusion of the near-IR data puts strong constraints on the third light which is composed of the reflection nebula, the spectroscopic tertiary and a visual fourth component. The absolute parameters of the inner eclipsing binary agree very well with previous work except of the primary radius (1.46+/-0.15 Rsun) and luminosity (40+/-10 Lsun) which are clearly smaller. While the parameters of the secondary are well understood when assuming an age of about 3-5 Myrs, the primary seems considerably undersized. Low metallicity cannot explain the parameters of the primary.
We have carried out a multi-band photometric monitoring of the close visual binary GJ3039, consisting of a M4 primary and a fainter secondary component, and likely member of the young stellar association $beta$ Pictoris (24-Myr old). From our analysi
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for
We present the JHKs light curves for the double-lined eclipsing binary 2MASS J05352184-0546085, in which both components are brown dwarfs. We analyze these light curves with the published Ic-band light curve and radial velocities to provide refined m
$^{13}$CO(J=2--1) and C$^{18}$O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute
Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and th