ﻻ يوجد ملخص باللغة العربية
We propose a phase diagram for FexBi2Te3 (0 < x < 0.1) single crystals, which belong to a class of magnetically bulk-doped topological insulators. The evolution of magnetic correlations from ferromagnetic- to antiferromagnetic- gives rise to topological phase transitions, where the paramagnetic topological insulator of Bi2Te3 turns into a band insulator with ferromagnetic-cluster glassy behaviours around x ~ 0.025, and it further evolves to a topological insulator with valence-bond glassy behaviours, which spans over the region between x ~ 0.03 up to x ~ 0.1. This phase diagram is verified by measuring magnetization, magnetotransport, and angle-resolved photoemission spectra with theoretical discussions.
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragona
The chiral helimagnet Cr1/3NbS2 has been investigated by magnetic, transport and thermal properties measurements on single crystals and by first principles electronic structure calculations. From the measured field and temperature dependence of the m
The low-temperature thermal conductivity (kappa) of GdFeO_3 single crystals is found to be strongly dependent on magnetic field. The low-field kappa (H) curves show two dips for H parallel a and only one dip for H parallel c, with the characteristic
Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagome f
Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a Charge Density Wave (CDW), is the only ex