ﻻ يوجد ملخص باللغة العربية
We show the existence of regular combinatorial objects which previously were not known to exist. Specifically, for a wide range of the underlying parameters, we show the existence of non-trivial orthogonal arrays, t-designs, and t-wise permutations. In all cases, the sizes of the objects are optimal up to polynomial overhead. The proof of existence is probabilistic. We show that a randomly chosen structure has the required properties with positive yet tiny probability. Our method allows also to give rather precise estimates on the number of objects of a given size and this is applied to count the number of orthogonal arrays, t-designs and regular hypergraphs. The main technical ingredient is a special local central limit theorem for suitable lattice random walks with finitely many steps.
Let the random variable $X, :=, e(mathcal{H}[B])$ count the number of edges of a hypergraph $mathcal{H}$ induced by a random $m$ element subset $B$ of its vertex set. Focussing on the case that $mathcal{H}$ satisfies some regularity condition we prov
For any positive integers $n, s, t, l$ such that $n geq 10$, $s, t geq 2$, $l geq 1$ and $n geq s+t+l$, a new infinite family of regular 3-hypertopes with type $(2^s, 2^t, 2^l)$ and automorphism group of order $2^n$ is constructed.
We derive combinatorial necessary conditions for discrete-time quantum walks defined by regular mixed graphs to be periodic. If the quantum walk is periodic, all the eigenvalues of the time evolution matrices must be algebraic integers. Focusing on t
A (q,k,t)-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the following design-like condition: each row has at most q non-zeros, each column has at least k non-zeros and the supports of every two columns intersect in at mo
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break