ترغب بنشر مسار تعليمي؟ اضغط هنا

Transporting non-Gaussianity from sub to super-horizon scales

68   0   0.0 ( 0 )
 نشر من قبل David Mulryne
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David J. Mulryne




اسأل ChatGPT حول البحث

We extend the `moment transport method for calculating the statistics of inflationary perturbations to the quantum phase of evolution on sub-horizon scales. The quantum transport equations form a set of coupled ordinary differential equations for the evolution of quantum correlation functions during inflation, which are valid on sub- and super-horizon scales, and reduce to the known classical transport equations after horizon crossing. The classical and quantum equations follow directly from the field equations of cosmological perturbation theory. In this paper, we focus on how the evolution equations arise, and explore how transport methods relate to other approaches, and in particular how formal integral solutions to the transport equations connect to those of the In-In formalism.

قيم البحث

اقرأ أيضاً

249 - David Wands (ICG , Portsmouth , 2010
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non -linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
We present a new harmonic-domain approach for extracting morphological information, in the form of Minkowski Functionals (MFs), from weak lensing (WL) convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the range of angular scales probed by most current weak-lensing surveys, we show that the study of three generalized skewness parameters is equivalent to the study of the three MFs defined in two dimensions. We then extend these skewness parameters to three associated skew-spectra which carry more information about the convergence bispectrum than their one-point counterparts. We discuss various issues such as noise and incomplete sky coverage in the context of estimation of these skew-spectra from realistic data. Our technique provides an alternative to the pixel-space approaches typically used in the estimation of MFs, and it can be particularly useful in the presence of masks with non-trivial topology. Analytical modeling of weak lensing statistics relies on an accurate modeling of the statistics of underlying density distribution. We apply three different formalisms to model the underlying dark-matter bispectrum: the hierarchical ansatz, halo model and a fitting function based on numerical simulations; MFs resulting from each of these formalisms are computed and compared. We investigate the extent to witch late-time gravity-induced non-Gaussianity (to which weak lensing is primarily sensitive) can be separated from primordial non-Gaussianity and how this separation depends on source redshift and angular scale.
70 - Bartjan van Tent 2021
The non-Gaussianity of inflationary perturbations, as encoded in the bispectrum (or 3-point correlator), has become an important additional way of distinguishing between inflation models, going beyond the linear Gaussian perturbation quantities of th e power spectrum. This habilitation thesis provides a review of my work on both the theoretical and the observational aspects of these non-Gaussianities. In the first part a formalism is described, called the long-wavelength formalism, that provides a way to compute the non-Gaussianities in multiple-field inflation. Applications of this formalism to various classes of models, as well as its extensions, are also treated. In the second part an estimator is described, called the binned bispectrum estimator, that allows the extraction of information about non-Gaussianities from data of the cosmic microwave background radiation (CMB). It was in particular one of the three estimators applied to the data of the Planck satellite to provide the currently best constraints on primordial non-Gaussianity. Various extensions of the estimator and results obtained are also discussed.
Enormous information about interactions is contained in the non-Gaussianities of the primordial curvature perturbations, which are essential to break the degeneracy of inflationary models. We study the primordial bispectra for G-inflation models pred icting both sharp and broad peaks in the primordial scalar power spectrum. We calculate the non-Gaussianity parameter $f_{mathrm{NL}}$ in the equilateral limit and squeezed limit numerically, and confirm that the consistency relation holds in these models. Even though $f_{mathrm{NL}}$ becomes large at the scales before the power spectrum reaches the peak and the scales where there are wiggles in the power spectrum, it remains to be small at the peak scales. Therefore, the contributions of non-Gaussianity to the scalar induced secondary gravitational waves and primordial black hole abundance are expected to be negligible.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non- attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا