ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ramsey number of the triangle and the cube

167   0   0.0 ( 0 )
 نشر من قبل Robert Morris
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ramsey number r(K_3,Q_n) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K_N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and ErdH{o}s conjectured that r(K_3,Q_n) = 2^{n+1} - 1 for every n in N, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K_3,Q_n) le 7000 cdot 2^n. Here we show that r(K_3,Q_n) = (1 + o(1)) 2^{n+1} as n to infty.



قيم البحث

اقرأ أيضاً

The areas of Ramsey theory and random graphs have been closely linked ever since ErdH{o}s famous proof in 1947 that the diagonal Ramsey numbers $R(k)$ grow exponentially in $k$. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the off-diagonal Ramsey numbers $R(3,k)$. In this model, edges of $K_n$ are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted $G_{n,triangle}$. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kims celebrated result that $R(3,k) = Theta big( k^2 / log k big)$. In this paper we improve the results of both Bohman and Kim, and follow the triangle-free process all the way to its asymptotic end. In particular, we shall prove that $$ebig( G_{n,triangle} big) ,=, left( frac{1}{2sqrt{2}} + o(1) right) n^{3/2} sqrt{log n },$$ with high probability as $n to infty$. We also obtain several pseudorandom properties of $G_{n,triangle}$, and use them to bound its independence number, which gives as an immediate corollary $$R(3,k) , ge , left( frac{1}{4} - o(1) right) frac{k^2}{log k}.$$ This significantly improves Kims lower bound, and is within a factor of $4 + o(1)$ of the best known upper bound, proved by Shearer over 25 years ago.
81 - Linyuan Lu , Zhiyu Wang 2019
For a fixed set of positive integers $R$, we say $mathcal{H}$ is an $R$-uniform hypergraph, or $R$-graph, if the cardinality of each edge belongs to $R$. An $R$-graph $mathcal{H}$ is emph{covering} if every vertex pair of $mathcal{H}$ is contained in some hyperedge. For a graph $G=(V,E)$, a hypergraph $mathcal{H}$ is called a textit{Berge}-$G$, denoted by $BG$, if there exists an injection $f: E(G) to E(mathcal{H})$ such that for every $e in E(G)$, $e subseteq f(e)$. In this note, we define a new type of Ramsey number, namely the emph{cover Ramsey number}, denoted as $hat{R}^R(BG_1, BG_2)$, as the smallest integer $n_0$ such that for every covering $R$-uniform hypergraph $mathcal{H}$ on $n geq n_0$ vertices and every $2$-edge-coloring (blue and red) of $mathcal{H}$ , there is either a blue Berge-$G_1$ or a red Berge-$G_2$ subhypergraph. We show that for every $kgeq 2$, there exists some $c_k$ such that for any finite graphs $G_1$ and $G_2$, $R(G_1, G_2) leq hat{R}^{[k]}(BG_1, BG_2) leq c_k cdot R(G_1, G_2)^3$. Moreover, we show that for each positive integer $d$ and $k$, there exists a constant $c = c(d,k)$ such that if $G$ is a graph on $n$ vertices with maximum degree at most $d$, then $hat{R}^{[k]}(BG,BG) leq cn$.
The size-Ramsey number of a graph $F$ is the smallest number of edges in a graph $G$ with the Ramsey property for $F$, that is, with the property that any 2-colouring of the edges of $G$ contains a monochromatic copy of $F$. We prove that the size-Ra msey number of the grid graph on $ntimes n$ vertices is bounded from above by $n^{3+o(1)}$.
The Ramsey number r(K_s,Q_n) is the smallest positive integer N such that every red-blue colouring of the edges of the complete graph K_N on N vertices contains either a red n-dimensional hypercube, or a blue clique on s vertices. Answering a questio n of Burr and ErdH{o}s from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(K_s,Q_n) = (s-1) (2^n - 1) + 1 for every s in N and every sufficiently large n in N.
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows tha t $f(n)$ is at most $(2 sqrt{2} + o(1)) sqrt{n/log n}$. We improve this bound by a factor $sqrt{2}$, as well as obtaining an analogous bound on the list chromatic number which is tight up to a constant factor. A bound in terms of the number of edges that is similarly tight follows, and these results confirm a conjecture of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا