ﻻ يوجد ملخص باللغة العربية
The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense HII region containing ~14,000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5um [SIV] emission line with effective spectral resolutions, including thermal broadening, of ~25 and ~3 km/s and spatial resolution ~1. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km/s. The second feature is ~44km/s redward of the first and has FWHM 32 km/s. We argue that these are two giant embedded clusters, and estimate their masses to be ~3x10^5Mo and ~1.5x10^5 Mo. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.
We present a study of the kinematic properties of the ionized gas in the dominant giant HII region of the well known HII galaxy: II Zw 40. High spatial and spectral resolution spectroscopy has been obtained using IFU mode on the GMOS instrument at Ge
The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5{mu}m line of S+3 at 3.8 kms-1 spectral and 1.4 spatial resolution, using the high
It has recently been suggested that chemical processing can shape the spatial distributions of complex molecules in the Orion-KL region and lead to the nitrogen-oxygen chemical differentiation seen in previous observations of this source. Orion-KL is
NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with
We study the spatially resolved stellar kinematics of two star-forming galaxies at z = 0.1 from the larger DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. These galaxies, which have been characterized by high levels of star formation and