ﻻ يوجد ملخص باللغة العربية
We investigate numerically the effect of long-range interaction on the transverse localization of light. To this end, nonlinear zigzag optical waveguide lattices are applied, which allows precise tuning of the second-order coupling. We find that localization is hindered by coupling between next-nearest lattice sites. Additionally, (focusing) nonlinearity facilitates localization with increasing disorder, as long as the nonlinearity is sufficiently weak. However, for strong nonlinearities, increasing disorder results in weaker localization. The threshold nonlinearity, above which this anomalous result is observed grows with increasing second-order coupling.
Higher-order topological insulators (HOTI) are a novel topological phase beyond the framework of the conventional bulk-boundary correspondence. In these peculiar systems, the topologically nontrivial boundary modes are characterized by a co-dimension
Second-harmonic and sum-frequency mixing phenomena associated with 3D-localized photonic modes are studied in InP-based planar photonic crystal microcavities excited by short-pulse radiation near 1550 nm. Three-missing-hole microcavities that support
Polarization-resolved second-harmonic spectra are obtained from the resonant modes of a two-dimensional planar photonic crystal microcavity patterned in a free-standing InP slab. The photonic crystal microcavity is comprised of a single missing-hole
Moire lattices consist of two identical periodic structures overlaid with a relative rotation angle. Present even in everyday life, moire lattices have been also produced, e.g., with coupled graphene-hexagonal boron nitride monolayers, graphene-graph
We report on the experimental observation of reduced light energy transport and disorder-induced localization close to a boundary of a truncated one-dimensional (1D) disordered photonic lattice. Our observations uncover that near the boundary a highe