ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of an intrinsic value for the surface recombination velocity in doped semiconductors

47   0   0.0 ( 0 )
 نشر من قبل Alistair Rowe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A self-consistent expression for the surface recombination velocity $S$ and the surface Fermi level unpinning energy as a function of light excitation power ($P$) is presented for n- and p-type semiconductors doped above the 10$^{16}$ cm$^{-3}$ range. Measurements of $S$ on p-type GaAs films using a novel polarized microluminescence technique are used to illustrate two limiting cases of the model. For a naturally oxidized surface $S$ is described by a power law in $P$ whereas for a passivated surface $S^{-1}$ varies logarithmically with $P$. Furthermore, the variation in $S$ with surface state density and bulk doping level is found to be the result of Fermi level unpinning rather than a change in the intrinsic surface recombination velocity. It is concluded that $S$ depends on $P$ throughout the experimentally accessible range of excitation powers and therefore that no instrinsic value can be determined. Previously reported values of $S$ on a range of semiconducting materials are thus only valid for a specific excitation power.

قيم البحث

اقرأ أيضاً

The behavior of spin diffusion in doped semiconductors is shown to be qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet in an intrinsic semiconductor must be a multiple-band disturbance, involving inhomogeneous distribut ions of both electrons and holes, in a doped semiconductor a single-band disturbance is possible. For n-doped nonmagnetic semiconductors the enhancement of diffusion due to a degenerate electron sea in the conduction band is much larger for these single-band spin packets than for charge packets, and can exceed an order of magnitude at low temperatures even for equilibrium dopings as small as 10^16 cm^-3. In n-doped ferromagnetic and semimagnetic semiconductors the motion of spin packets polarized antiparallel to the equilibrium carrier spin polarization is predicted to be an order of magnitude faster than for parallel polarized spin packets. These results are reversed for p-doped semiconductors.
70 - Oleg Rubel 2019
The original Shockley-Read-Hall recombination statistics is extended to include recombination of localized excitations. The recombination is treated as a bimolecular process rather than a monomolecular recombination of excitons. The emphasis is place d on an interplay between two distinct channels of radiative recombination (shallow localized states vs extended states) mediated by trapping of photogenerated charge carriers by non-radiative centers. Results of a numerical solution for a given set of parameters are complemented by an approximate analytical expression for the thermal quenching of the photoluminescence intensity in non-degenerate semiconductors derived in the limit of low pump intensities. The merit of a popular double-exponential empirical function for fitting the thermal quenching of the photoluminescence intensity is critically examined.
In a recent letter, it has been predicted within first principle studies that Mn-doped ZrO2 compounds could be good candidate for spintronics application because expected to exhibit ferromagnetism far beyond room temperature. Our purpose is to addres s this issue experimentally for Mn-doped tetragonal zirconia. We have prepared polycrystalline samples of Y0.15(Zr0.85-yMny)O2 (y=0, 0.05, 0.10, 0.15 & 0.20) by using standard solid state method at equilibrium. The obtained samples were carefully characterized by using x-ray diffraction, scanning electron microscopy, elemental color mapping, X-ray photoemission spectroscopy and magnetization measurements. From the detailed structural analyses, we have observed that the 5% Mn doped compound crystallized into two symmetries (dominating tetragonal & monoclinic), whereas higher Mn doped compounds are found to be in the tetragonal symmetry only. The spectral splitting of the Mn 3s core-level x-ray photoelectron spectra confirms that Mn ions are in the Mn3+ oxidation state and indicate a local magnetic moment of about 4.5 {mu}B/Mn. Magnetic measurements showed that compounds up to 10% of Mn doping are paramagnetic with antiferromagnetic interactions. However, higher Mn doped compound exhibits local ferrimagnetic ordering. Thus, no ferromagnetism has been observed for all Mn-doped tetragonal ZrO2 samples.
90 - T. Dietl , K. Sato , T. Fukushima 2014
This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnet ically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {em dairiseki} phase) or nanocolumns (the {em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.
We probe charge photogeneration and subsequent recombination dynamics in neat regioregular poly(3-hexylthiophene) films over six decades in time by means of time-resolved photoluminescence spectroscopy. Exciton dissociation at 10K occurs extrinsicall y at interfaces between molecularly ordered and disordered domains. Polaron pairs thus produced recombine by tunnelling with distributed rates governed by the distribution of electron-hole radii. Quantum-chemical calculations suggest that hot-exciton dissociation at such interfaces results from a high charge-transfer character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا