ترغب بنشر مسار تعليمي؟ اضغط هنا

A Stochastic Method for Computing Hadronic Matrix Elements

225   0   0.0 ( 0 )
 نشر من قبل Vincent Drach
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.



قيم البحث

اقرأ أيضاً

We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum fraction $langle xrangle_{u -d}$ are calculated with overlap fermion on 2+1 flavor domain-wall configurations on a $24^3 times 64$ lattice at $m_{pi} = 330$ MeV with lattice spacing $a = 0.114$ fm.
We report on our on-going project to calculate proton decay matrix elements using domain-wall fermions on the lattice. By summarizing the history of the proton decay calculation on the lattice, we reveal the systematic errors of those calculations. T hen we discuss our approach to tackle those uncertainties and show our preliminary results on the matrix elements.
67 - C.C. Chang 2015
Neutral-meson mixing is loop suppressed in the Standard Model, leading to the possibility of enhanced sensitivity to new physics. The uncertainty in Standard Model predictions for $B$-meson oscillation frequencies is dominated by theoretical uncertai nties within the short-distance $B$-meson hadronic matrix elements, motivating the need for improved precision. In $D$-meson mixing, the Standard Model short-distance contributions are further suppressed by the GIM mechanism allowing for the possibility of large new physics enhancements. A first-principle determination of the $D$-meson short-distance hadronic matrix elements will allow for model-discrimination between the new physics theories. I review recently published and ongoing lattice calculations of hadronic matrix elements in $B$ and $D$-meson mixing with emphasis on the Fermilab lattice and MILC collaboration effort on the determination of the $B$ and $D$-meson mixing hadronic matrix elements using the methods of lattice QCD.
We present preliminary results of matrix elements of four-fermion operators relevant to the determination of e and e/e using staggered fermions.
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormali zation necessary for the matching to the continuum theory. Preliminary results for the renormalized chiral lagrangian parameters are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا