ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation of Alfvenic Waves From Corona to Chromosphere and Consequences for Solar Flares

154   0   0.0 ( 0 )
 نشر من قبل Alexander Russell
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of one second or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 seconds or longer pass through the chromosphere with relatively little damping, however, for periods of 1 second or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.



قيم البحث

اقرأ أيضاً

Small-scale magnetic field concentrations (magnetic elements) in the quiet Sun are believed to contribute to the energy budget of the upper layers of the Suns atmosphere, as they are observed to support a large number of MHD modes. In recent years, k ink waves in magnetic elements were observed at different heights in the solar atmosphere, from the photosphere to the corona. However, the propagation of these waves has not been fully evaluated. Our aim is to investigate the propagation of kink waves in small magnetic elements in the solar atmosphere. We analysed spectropolarimetric data of high-quality and long duration of a photospheric quiet Sun region observed near the disk center with the spectropolarimeter CRISP at the Swedish Solar Telescope (SST), and complemented by simultaneous and co-spatial broad-band chromospheric observations of the same region. Our findings reveal a clear upward propagation of kink waves with frequency above $~2.6$ mHz. Moreover, the signature of a non-linear propagation process is also observed. By comparing photospheric to chromospheric power spectra, no signature of an energy dissipation is found at least at the atmospheric heights at which the data analysed originate. This implies that most of the energy carried by the kink waves (within the frequency range under study $< 17$ mHz) flows to upper layers in the Suns atmosphere.
A white paper prepared for the Space Studies Board, National Academy of Sciences (USA), for its Decadal Survey of Solar and Space Physics (Heliophysics), reviewing and encouraging studies of flare physics in the chromosphere.
102 - D. Baker 2020
In this study, we investigate the spatial distribution of highly varying plasma composition around one of the largest sunspots of solar cycle 24. Observations of the photosphere, chromosphere, and corona are brought together with magnetic field model ling of the sunspot in order to probe the conditions which regulate the degree of plasma fractionation within loop populations of differing connectivities. We find that in the coronal magnetic field above the sunspot umbra, the plasma has photospheric composition. Coronal loops rooted in the penumbra contain fractionated plasma, with the highest levels observed in the loops that connect within the active region. Tracing field lines from regions of fractionated plasma in the corona to locations of Alfvenic fluctuations detected in the chromosphere shows that they are magnetically linked. These results indicate a connection between sunspot chromospheric activity and observable changes in coronal plasma composition.
145 - Lyndsay Fletcher 2010
The emphasis of observational and theoretical flare studies in the last decade or two has been on the flare corona, and attention has shifted substantially away from the flares chromospheric aspects. However, although the pre-flare energy is stored i n the corona, the radiative flare is primarily a chromospheric phenomenon, and its chromospheric emission presents a wealth of diagnostics for the thermal and non-thermal components of the flare. I will here review the chromospheric signatures of flare energy release and the problems thrown up by the application of these diagnostics in the context of the standard flare model. I will present some ideas about the transport of energy to the chromosphere by other means, and calculations of the electron acceleration that one might expect in one such model.
Solar flares are driven by the release of magnetic energy from reconnection events in the solar corona, whereafter energy is transported to the chromosphere, heating the plasma and causing the characteristic radiative losses. In the collisional thick -target model, electrons accelerated to energies exceeding 10 keV traverse the corona and impact the chromosphere, where they deposit their energy through collisions with the much denser plasma in the lower atmosphere. While there are undoubtedly high energy non-thermal electrons accelerated in flares, it is unclear whether these electron beams are the sole mechanism of energy transport, or whether they only dominate in certain phases of the flares evolution. Alfvenic waves are generated during the post-reconnection relaxation of magnetic field lines, so it is important to examine their role in energy transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا