ترغب بنشر مسار تعليمي؟ اضغط هنا

Quenching nitrogen-vacancy center photoluminescence with infrared pulsed laser

144   0   0.0 ( 0 )
 نشر من قبل Francois Treussart
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diamond nanocrystals containing Nitrogen-Vacancy (NV) color centers have been used in recent years as fluorescent probes for near-field and cellular imaging. In this work we report that an infrared (IR) pulsed excitation beam can quench the photoluminescence of NV color center in a diamond nanocrystal (size < 50 nm) with an extinction ratio as high as ~90%. We attribute this effect to the heating of the nanocrystal consecutive to multi-photon absorption by the diamond matrix. This quenching is reversible: the photoluminescence intensity goes back to its original value when the IR laser beam is turned off, with a typical response time of hundred picoseconds, allowing for a fast control of NV color center photoluminescence. We used this effect to achieve sub-diffraction limited imaging of fluorescent diamond nanocrystals on a coverglass. For that, as in Ground State Depletion super-resolution technique, we combined the green excitation laser beam with the control IR depleting one after shaping its intensity profile in a doughnut form, so that the emission comes only from the sub-wavelength size central part.



قيم البحث

اقرأ أيضاً

Solid-state quantum emitters have emerged as robust single-photon sources and addressable spins: key components in rapidly developing quantum technologies for broadband magnetometry, biological sensing, and quantum information science. Performance in these applications, be it magnetometer sensitivity or quantum key generation rate, is limited by the number of photons detected. However, efficient collection of a quantum emitters photoluminescence (PL) is challenging as its atomic scale necessitates diffraction-limited imaging with nanometer-precision alignment, oftentimes at cryogenic temperatures. In this letter, we image an individual quantum emitter, an isolated nitrogen-vacancy (NV) center in diamond, using a dielectric metalens composed of subwavelength pillars etched into the diamonds surface. The metalens eliminates the need for an objective by operating as a high-transmission-efficiency immersion lens with a numerical aperture (NA) greater than 1.0. This design provides a scalable approach for fiber coupling solid-state quantum emitters that will enable the development of deployable quantum devices.
This article proposes a scheme for nitrogen-vacancy (NV) center magnetometry that combines the advantages of lock-in detection and pulse-type scheme. The optimal conditions, optimal sensitivity, and noise-suppression capability of the proposed method are compared with those of the conventional methods from both theoretical and simulation points of view. Through experimental measurements, a four-time improvement in sensitivity and 60-times improvement in minimum resolvable magnetic field (MRMF) was obtained. By using a confocal experiment setup, proposed scheme achieves a sensitivity of 3 nT/Hz1/2 and a MRMF of 100 pT.
Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and biolabeling. In this work we demonstrate a robust approach to surface functionalize individual nanodiamonds with metal-phenolic networks that enhance the photolum inescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation suppresses the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications
The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin stat es, which enables to have an effect on the NV centers luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. The comprehensive analysis of the couplings and related optical signal at the GSLAC provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant $^{14}$NV center but the $^{15}$NV can also be utilized in such applications and that nuclear spins coupled to P1 centers can be polarized directly by the NV center at the GSLAC, through a giant effective nuclear $g$-factor arising from the NV center-P1 center-nuclear spin coupling. We report on new alternative for measuring defect concentration in the vicinity of NV centers and on the optical signatures of interacting, mutually aligned NV centers.
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar e shifted due to the Doppler effect. When the control and probe fields are incident to the NV center from the same direction, the two-photon resonance still holds as the Doppler shifts of the two fields are the same. Thus, due to the electromagnetically-induced transparency (EIT), the probe light can pass through the NV center nearly without absorption. However, when the two fields propagate in opposite directions, the probe light can not effectively pass through the NV center as a result of the breakdown of two-photon resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا