ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization

41   0   0.0 ( 0 )
 نشر من قبل Erik Lascaris
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liquid phases---low-density liquid (LDL) and high-density liquid (HDL)---deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stability of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature and constant number of molecules N for N<=729 and times up to 1000 ns. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N=512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs tiny crystallites grow and then melt within 1000 ns. Only for N<=343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystallization after crystallites reach an estimated critical size of about 70+/-10 molecules.

قيم البحث

اقرأ أيضاً

The study of liquid-liquid phase transition has attracted considerable attention. One interesting example of such phenomenon is phosphorus for which the existence a first-order phase transition between a low density insulating molecular phase and a c onducting polymeric phase has been experimentally established. In this paper, we model this transition by an ab-initio quality molecular dynamics simulation and explore a large portion of the liquid section of the phase diagram. We draw the liquid-liquid coexistence curve and determine that it terminates into a second-order critical point. Close to the critical point, large coupled structure and electronic structure fluctuations are observed.
115 - Jiarul Midya , Subir K. Das 2016
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model, includi ng the critical point, have been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.
Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models ( WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other tetrahedral liquids, and relating the average Si-O-Si bond angle and liquid density at the model glass temperature to those of the ice-like beta-cristobalite structure, we conclude that the absence of a critical point can be attributed to insufficient stiffness in the bond angle. We hypothesize that a modification of the potential function to mildly favor larger average bond angles will generate a LLCP in a temperature range that is accessible to simulation. The tendency to crystallize in these models is extremely weak in the pressure range studied, although this tendency will undoubtedly increase with increasing stiffness.
187 - Erik Lascaris 2015
Recently it was shown that the WAC model for liquid silica [L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)] is remarkably close to having a liquid-liquid critical point (LLCP). We demonstrate that increasing the ion ch arge separates the global maxima of the response functions, while reducing the charge smoothly merges them into a LLCP; a phenomenon that might be experimentally observable with charged colloids. An analysis of the Si and O coordination numbers suggests that a sufficiently low Si/O coordination number ratio is needed to attain a LLCP.
230 - A.D. Bruce , N.B. Wilding 1999
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi on is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا