ﻻ يوجد ملخص باللغة العربية
From a recent paper, we recall the Hopf monoid structure on the supercharacters of the unipotent uppertriangular groups over a finite field. We give cancelation free formula for the antipode applied to the bases of class functions and power sum functions, giving new cancelation free formulae for the standard Hopf algebra of supercharacters and symmetric functions in noncommuting variables. We also give partial results for the antipode on the supercharacter basis, and explicitly describe the primitives of this Hopf monoid.
Many combinatorial Hopf algebras $H$ in the literature are the functorial image of a linearized Hopf monoid $bf H$. That is, $H={mathcal K} ({bf H})$ or $H=overline{mathcal K} ({bf H})$. Unlike the functor $overline{mathcal K}$, the functor ${mathcal
We extend Schaumanns theory of pivotal structures on fusion categories matched to a module category and of module traces developed in arXiv:1206.5716 to the case of non-semisimple tensor categories, and use it to study eigenvalues of the squared anti
In arXiv:1709.07504 Ardila and Aguiar give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
We introduce two kinds of gauge invariants for any finite-dimensional Hopf algebra H. When H is semisimple over C, these invariants are respectively, the trace of the map induced by the antipode on the endomorphism ring of a self-dual simple module,