ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet topological quantum phase transitions in the transverse Wen-plaquette model

126   0   0.0 ( 0 )
 نشر من قبل Victor Manuel Bastidas Valencia
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our aim in this work is to study the nonequilibrium behavior of the topological quantum phase transition in the transverse Wen-plaquette model. We show that under the effect of a nonadiabatic driving the system exhibits a new topological phase and a rich phase diagram. We define generalized topological order parameters by considering cycle-averaged expectation values of string operators in a Floquet state



قيم البحث

اقرأ أيضاً

We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. The realisation of an engineered quantum system, wher e the predicted phase transition shall occur, is also presented. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization group flow equation of its couplings, showing that the critical value of the frequency is the square of the corresponding value in $2D$. The value of the anomalous dimension at the critical point is determined ($eta=1/32$) and a conjecture for the universal jump of the superfluid stiffness ($4/pi^2$) presented.
198 - J. Vidal 2021
Using a description of the Levin-Wen model excitations in terms of Wilson lines, we compute the degeneracy of the energy levels for any input anyon theory and for any trivalent graph embedded on any (orientable) compact surface. This result allows on e to obtain the finite-size and finite-temperature partition function and to show that there are no thermal phase transitions.
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mo tt insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrodinger equation for the experimental setup recently done by Braun et.al. [Proc. Nat. Acad. Sci. 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the freeze time $hat{t}$, there exists another important time, $t_{rm eq}$, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time $tQ$, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.
We explore adiabatic pumping in the presence of periodic drive, finding a new phase in which the topologically quantized pumped quantity is energy rather than charge. The topological invariant is given by the winding number of the micromotion with re spect to time within each cycle, momentum, and adiabatic tuning parameter. We show numerically that this pump is highly robust against both disorder and interactions, breaking down at large values of either in a manner identical to the Thouless charge pump. Finally, we suggest experimental protocols for measuring this phenomenon.
We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the groun d-state phase diagram and shows that, besides dimerized Mott and density-wave insulating phases, an intermediate symmetry-protected topological Haldane insulator emerges at weak Coulomb interactions for filling factor one, which disappears, however, when the dimerization becomes too large. Analyzing the critical behavior of the model, we prove that the phase boundaries of the Haldane phase to Mott insulator and density-wave states belong to the Gaussian and Ising universality classes with central charges $c=1$ and $c=1/2$, respectively, and merge in a tricritical point. Interestingly we can demonstrate a direct Ising quantum phase transition between the dimerized Mott and density-wave phases above the tricritical point. The corresponding transition line terminates at a critical end point that belongs to the universality class of the dilute Ising model with $c=7/10$. At even stronger Coulomb interactions the transition becomes first order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا