ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating Shannons entropy $H$ from discrete data, in cases where the number of possible symbols is unknown or even countably infinite. The Pitman-Yor process, a generalization of Dirichlet process, provides a tractable prior distribution over the space of countably infinite discrete distributions, and has found major applications in Bayesian non-parametric statistics and machine learning. Here we show that it also provides a natural family of priors for Bayesian entropy estimation, due to the fact that moments of the induced posterior distribution over $H$ can be computed analytically. We derive formulas for the posterior mean (Bayes least squares estimate) and variance under Dirichlet and Pitman-Yor process priors. Moreover, we show that a fixed Dirichlet or Pitman-Yor process prior implies a narrow prior distribution over $H$, meaning the prior strongly determines the entropy estimate in the under-sampled regime. We derive a family of continuous mixing measures such that the resulting mixture of Pitman-Yor processes produces an approximately flat prior over $H$. We show that the resulting Pitman-Yor Mixture (PYM) entropy estimator is consistent for a large class of distributions. We explore the theoretical properties of the resulting estimator, and show that it performs well both in simulation and in application to real data.
The performance of the existing sparse Bayesian learning (SBL) methods for off-gird DOA estimation is dependent on the trade off between the accuracy and the computational workload. To speed up the off-grid SBL method while remain a reasonable accura
In prefix coding over an infinite alphabet, methods that consider specific distributions generally consider those that decline more quickly than a power law (e.g., Golomb coding). Particular power-law distributions, however, model many random variabl
This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fu
This paper gives upper and lower bounds on the minimum error probability of Bayesian $M$-ary hypothesis testing in terms of the Arimoto-Renyi conditional entropy of an arbitrary order $alpha$. The improved tightness of these bounds over their specializ
This paper deals with the state estimation problem in discrete-event systems modeled with nondeterministic finite automata, partially observed via a sensor measuring unit whose measurements (reported observations) may be vitiated by a malicious attac