ﻻ يوجد ملخص باللغة العربية
During Nova operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is slipped by changing the RF frequency, but without a 7th injection, have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.
We discuss the progress made on a new installation in Fermilabs Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In th
To date, the 120 GeV Fermilab Main Injector accelerator has accelerated a single batch of protons from the 8 GeV rapid-cycling Booster synchrotron for production of antiprotons for Run II. In the future, the Main Injector must accelerate 6 or more Bo
From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at
This paper presents the modeling of time-structured multiturn injection for an upgraded Main Injector with the 8-GeV Superconducting RF proton driver, or an ILC-style linac, or a Project-X linac. The Radio-Frequency mismatch between a linac and the u
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the