ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2 superlattices

151   0   0.0 ( 0 )
 نشر من قبل Jason Hoffman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(LaNiO3)n/(LaMnO3)2 superlattices were grown using ozone-assisted molecular beam epitaxy, where LaNiO3 is a paramagnetic metal and LaMnO3 is an antiferromagnetic insulator. The superlattices exhibit excellent crystallinity and interfacial roughness of less than 1 unit cell. X-ray spectroscopy and dichroism measurements indicate that electrons are transferred from the LaMnO3 to the LaNiO3, inducing magnetism in LaNiO3. Magnetotransport measurements reveal a transition from metallic to insulating behavior as the LaNiO3 layer thickness is reduced from 5 unit cells to 2 unit cells and suggest a modulated magnetic structure within LaNiO3.



قيم البحث

اقرأ أيضاً

239 - J. Hoffman , B. J. Kirby , J. Kwon 2014
Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects and locally broken symmetries. We report upon the discovery of a non-collinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2/3Sr1/3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the non-collinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2+ states. This provides a new approach to engineering non-collinear spin textures in metallic oxide heterostructures that can be exploited in devices based on both spin and charge transport.
Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic proper ties. The microstructure of the films is investigated on the atomic level and the role of observed defects is discussed in the context of the different properties. Two types of Ruddlesden-Popper faults are found which are either two or three dimensional. The common planar Ruddlesden-Popper fault is induced by steps on the substrate surface. In contrast, the three-dimensionally arranged Ruddlesden-Popper fault, whose size is in the nanometer range, is caused by the formation of local stacking faults during film growth. Furthermore, the interfaces of the superlattices are found to show different sharpness, but the microstructure does not depend substantially on the single-layer thickness.
We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coi ncident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.
Taking advantage of the large electron escape depth of soft x-ray angle resolved photoemission spectroscopy we report electronic structure measurements of (111)-oriented [LaNiO3/LaMnO3] superlattices and LaNiO3 epitaxial films. For thin films we obse rve a 3D Fermi surface with an electron pocket at the Brillouin zone center and hole pockets at the zone vertices. Superlattices with thick nickelate layers present a similar electronic structure. However, as the thickness of the LaNiO3 is reduced the superlattices become insulating. These heterostructures do not show a marked redistribution of spectral weight in momentum space but exhibit a pseudogap of 50 meV.
The inside of the electrical double layer at perovskite oxide heterointerfaces is examined. Here, we report the local polarization and valence distribution in LaNiO$_3$/LaMnO$_3$ and LaMnO$_3$/LaNiO$_3$ bilayers on a SrTiO$_3$ (001) substrate. Simult aneous measurements of two aspects of the structure are realized by using Bayesian inference based on resonant- and nonresonant-surface X-ray diffraction data. The results show that the average Mn valences are Mn$^{3.12+}$ and Mn$^{3.19+}$ for the two samples. The intensity of their local electric field is $sim$1~GV/m and the direction of the field points from LaMnO$_3$ to LaNiO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا