ﻻ يوجد ملخص باللغة العربية
We investigate the effects of crystal field splitting in a doped two-band Hubbard model with different bandwidths within dynamical mean-field theory (DMFT), using a quantum Monte Carlo impurity solver. In addition to an orbital-selective Mott phase (OSMP) of the narrow band, which is adiabatically connected with the well-studied OSMP in the half-filled case without crystal field splitting, we find, for sufficiently strong interaction and a suitable crystal field, also an OSMP of the wide band. We establish the phase diagram (in the absence of magnetic or orbital order) at moderate doping as a function of interaction strength and crystal field splitting and show that also the wide-band OSMP is associated with non-Fermi-liquid behavior in the case of Ising type Hund rule couplings. Our numerical results are supplemented by analytical strong-coupling studies of spin order and spectral functions at integer filling.
We analyze the electronic properties of interacting crystal field split three band systems. Using a rotationally invariant slave boson approach we analyze the behavior of the electronic mass renormalization as a function of the intralevel repulsion $
The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and reali
We study non-local correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter with robust Hunds coupling,
We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half filling using the dynamical mean field theory. We find that the e-ph interaction, even at weak co
We present a study of the paramagnetic metallic and insulating phases of vanadium sesquioxide by means of the $N$th order muffin-tin orbital implementation of density functional theory combined with dynamical mean-field theory. The transition is show