ﻻ يوجد ملخص باللغة العربية
In this paper, two-user Gaussian interference channel(GIC) is revisited with the objective of developing implementable (explicit) channel codes. Specifically, low density parity check (LDPC) codes are adopted for use over these channels, and their benefits are studied. Different scenarios on the level of interference are considered. In particular, for strong interference channel examples with binary phase shift keying (BPSK), it is demonstrated that rates better than those offered by single user codes with time sharing are achievable. Promising results are also observed with quadrature-shift-keying (QPSK). Under general interference a Han-Kobayashi coding based scheme is employed splitting the information into public and private parts, and utilizing appropriate iterative decoders at the receivers. Using QPSK modulation at the two transmitters, it is shown that rate points higher than those achievable by time sharing are obtained.
In this paper, we focus on the two-user Gaussian interference channel (GIC), and study the Han-Kobayashi (HK) coding/decoding strategy with the objective of designing low-density parity-check (LDPC) codes. A code optimization algorithm is proposed wh
Consider transmission over a binary additive white gaussian noise channel using a fixed low-density parity check code. We consider the posterior measure over the code bits and the corresponding correlation between two codebits, averaged over the nois
We consider the effect of log-likelihood ratio saturation on belief propagation decoder low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on thre
We study the performance of low-density parity-check (LDPC) codes over finite integer rings, over two channels that arise from the Lee metric. The first channel is a discrete memory-less channel (DMC) matched to the Lee metric. The second channel add
The concept and existence of sphere-bound-achieving and capacity-achieving lattices has been explained on AWGN channels by Forney. LDPC lattices, introduced by Sadeghi, perform very well under iterative decoding algorithm. In this work, we focus on a