ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric field induced magnetic domain wall tilting

141   0   0.0 ( 0 )
 نشر من قبل Alexander Pyatakov P.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The inclination of the magnetic domain wall plane in electric field is observed. The simple theoretical model of this phenomenon that takes into account the spin flexoelectricity is proposed. The value of electric polarization of the magnetic domain wall is estimated as 0.3{mu}C/m^2 that agrees well with the results of electric field driven magnetic domain wall motion measurements.



قيم البحث

اقرأ أيضاً

Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater ials exhibit asymmetric DW speed variation under application of in plane magnetic field. Here, we show that such DW speed asymmetry causes the DW tilting during the motion along wire structure. It has been known that the DW tilting can be induced by the direct Zeeman interaction of the DW magnetization under application of in plane magnetic field. However, our experimental observations manifests that there exists another dominant process with the DW speed asymmetry caused by either the Dzyaloshinskii Moriya interaction (DMI) or the chirality dependent DW speed variation. A theoretical model based on the DW geometry reveals that the DW tilting is initiated by the DW pinning at wire edges and then, the direction of the DW tilting is determined by the DW speed asymmetry, as confirmed by a numerical simulation. The present observation reveals the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW geometry and consequently, the dynamics.
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall moti on in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
115 - H. Kakizakai , F. Ando , T. Koyama 2016
Electric field effect on magnetism is an appealing technique for manipulating the magnetization at a low cost of energy. Here, we show that the local magnetization of the ultra-thin Co film can be switched by just applying a gate electric field witho ut an assist of any external magnetic field or current flow. The local magnetization switching is explained by the nucleation and annihilation of the magnetic domain through the domain wall motion induced by the electric field. Our results lead to external field free and ultra-low energy spintronic applications.
The dynamic observation of domain wall motion induced by electric field in magnetoelectric iron garnet film is reported. Measurements in 800 kV/cm electric field pulses gave the domain wall velocity ~45 m/s. Similar velocity was achieved in magnetic field pulse about 50 Oe. Reversible and irreversible micromagnetic structure transformation is demonstrated. These effects are promising for applications in spintronics and magnetic memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا