ترغب بنشر مسار تعليمي؟ اضغط هنا

A Possible Cold Imprint of Voids on the Microwave Background Radiation

70   0   0.0 ( 0 )
 نشر من قبل Yan-Chuan Cai
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yan-Chuan Cai




اسأل ChatGPT حول البحث

We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the SDSS DR7 spectroscopic redshift galaxy catalog, spanning redshifts $0<z<0.44$. We find an imprint of amplitude between 2.6 and 2.9$mu K$ as viewed through a compensated top-hat filter scaled to the radius of each void; we assess the statistical significance of the imprint at ~2$sigma$. We make crucial use of $N$-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the Integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radius. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal is much higher-amplitude than expected from ISW in the concordance $Lambda$CDM universe. The discrepancy is also at the ~2$sigma$ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

قيم البحث

اقرأ أيضاً

Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the $3{sigma}$ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield $S/N sim 4$ for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE ($A sim 1$). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.
Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a > 3 sigma primordial Gaussian fluctuation to the imp rint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K. In this model the central CS temperature lies at ~ 2 sigma but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. The CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.
Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of thi s tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $Delta T_{f} approx -5.0pm3.7~mu K$ and a hot imprint of superclusters $Delta T_{f} approx 5.1pm3.2~mu K$ ; this is $sim1.2sigma$ higher than the expected $|Delta T_{f}| approx 0.6~mu K$ imprint of such super-structures in $Lambda$CDM. If we instead use an a posteriori selected filter size ($R/R_{v}=0.6$), we can find a temperature decrement as large as $Delta T_{f} approx -9.8pm4.7~mu K$ for voids, which is $sim2sigma$ above $Lambda$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.
The power spectrum is obtained for the Kolmogorov stochasticity parameter map for WMAPs cosmic microwave background (CMB) radiation temperature datasets. The interest for CMB Kolmogorov map is that it can carry direct information about voids in the m atter distribution, so that the correlations in the distribution of voids have to be reflected in the power spectrum. Although limited by the angular resolution of the WMAP, this analysis shows the possibility of acquiring this crucial information via CMB maps. Even the already obtained behavior, some of which is absent in the simulated maps, can influence the development of views on the void correlations at the large-scale web formation.
We analyze publicly available void catalogs of the Baryon Oscillation Spectroscopic Survey Data Release 10 at redshifts $0.4<z<0.7$. The first goal of this paper is to extend the Cosmic Microwave Background stacking analysis of previous spectroscopic void samples at $z<0.4$. In addition, the DR10 void catalog provides the first chance to spectroscopically probe the volume of the Granett et al. (2008) supervoid catalog that constitutes the only set of voids which has shown a significant detection of a cross-correlation signal between void locations and average CMB chill. We found that the positions of voids identified in the spectroscopic DR10 galaxy catalog typically do not coincide with the locations of the Granett et al. supervoids in the overlapping volume, in spite of the presence of large underdense regions of high void-density in DR10. This failure to locate the same structures with spectroscopic redshifts may arise due to systematic differences in the properties of voids detected in photometric and spectroscopic samples. In the stacking measurement, we first find a $Delta T = - 11.5 pm 3.7~mu K$ imprint for 35 of the 50 Granett et al. supervoids available in the DR10 volume. For the DR10 void catalog, lacking a prior on the number of voids to be considered in the stacking analysis, we find that the correlation measurement is fully consistent with no correlation. However, the measurement peaks with amplitude $Delta T = - 9.8 pm 4.8~mu K$ for the a posteriori-selected 44 largest voids of size $R>65~Mpc/h$ that does match in terms of amplitude and number of structures the Granett et al. observation, although at different void positions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا