ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravothermal Catastrophe: the dynamical stability of a fluid model

57   0   0.0 ( 0 )
 نشر من قبل Mattia Carlo Sormani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A re-investigation of the gravothermal catastrophe is presented. By means of a linear perturbation analysis, we study the dynamical stability of a spherical self-gravitating isothermal fluid of finite volume and find that the conditions for the onset of the gravothermal catastrophe, under different external conditions, coincide with those obtained from thermodynamical arguments. This suggests that the gravothermal catastrophe may reduce to Jeans instability, rediscovered in an inhomogeneous framework. We find normal modes and frequencies for the fluid system and show that instability develops on the dynamical time scale. We then discuss several related issues. In particular: (1) For perturbations at constant total energy and constant volume, we introduce a simple heuristic term in the energy budget to mimic the role of binaries. (2) We outline the analysis of the two-component case and show how linear perturbation analysis can be carried out also in this more complex context in a relatively straightforward way. (3) We compare the behavior of the fluid model with that of the collisionless sphere. In the collisionless case the instability seems to disappear, which is at variance with the linear Jeans stability analysis in the homogeneous case; we argue that a key ingredient to understand the difference (a spherical stellar system is expected to undergo the gravothermal catastrophe only in the presence of some collisionality, which suggests that the instability is dissipative and not dynamical) lies in the role of the detailed angular momentum in a collisionless system. Finally, we briefly comment on the meaning of the Boltzmann entropy and its applicability to the study of the dynamics of self- gravitating inhomogeneous gaseous systems.

قيم البحث

اقرأ أيضاً

We implement a steady, one-dimensional flow model for the X-ray jet of Centaurus A in which entrainment of stellar mass loss is the primary cause of dissipation. Using over 260 ks of new and archival Chandra/ACIS data, we have constrained the tempera ture, density and pressure distributions of gas in the central regions of the host galaxy of Centaurus A, and so the pressure throughout the length of its jet. The model is constrained by the observed profiles of pressure and jet width, and conserves matter and energy, enabling us to estimate jet velocities, and hence all the other flow properties. Invoking realistic stellar populations within the jet, we find that the increase in its momentum flux exceeds the net pressure force on the jet unless only about one half of the total stellar mass loss is entrained. For self-consistent models, the bulk speed only falls modestly, from ~0.67c to ~0.52c over the range of 0.25-5.94 kpc from the nucleus. The sonic Mach number varies between ~5.3 and 3.6 over this range.
253 - Nobuyuki Sakai 2008
We propose a practical method for analyzing stability of Q-balls for the whole parameter space, which includes the intermediate region between the thin-wall limit and thick-wall limit as well as Q-bubbles (Q-balls in false vacuum), using the catastro phe theory. We apply our method to the two concrete models, $V_3=m^2phi^2/2-muphi^3+lambdaphi^4$ and $V_4=m^2phi^2/2-lambdaphi^4+phi^6/M^2$. We find that $V_3$ and $V_4$ Models fall into {it fold catastrophe} and {it cusp catastrophe}, respectively, and their stability structures are quite different from each other.
It has been proposed that gravothermal collapse due to dark matter self-interactions (i.e. self-interacting dark matter, SIDM) can explain the observed diversity of the Milky Way (MW) satellites central dynamical masses. We investigate the process be hind this hypothesis using an $N$-body simulation of a MW-analogue halo with velocity dependent self-interacting dark matter (vdSIDM) in which the low velocity self-scattering cross-section, $sigma_{T}/m_{x}$, reaches 100 cm$^{2}$g$^{-1}$; we dub this model the vd100 model. We compare the results of this simulation to simulations of the same halo that employ different dark models, including cold dark matter (CDM) and other, less extreme SIDM models. The masses of the vd100 haloes are very similar to their CDM counterparts, but the values of their maximum circular velocities, $V_{max}$, are significantly higher. We determine that these high $V_{max}$ subhaloes were objects in the mass range [$5times10^{6}$, $1times10^{8}$] $M_odot$ at $z=1$ that undergo gravothermal core collapse. These collapsed haloes have density profiles that are described by single power laws down to the resolution limit of the simulation, and the inner slope of this density profile is approximately $-3$. Resolving the ever decreasing collapsed region is challenging, and tailored simulations will be required to model the runaway instability accurately at scales $<1$ kpc.
We present here how the gravothermal or Antonovs instability, which was originally formulated in the microcanonical ensemble, is modified in the presence of a cosmological constant and in the canonical ensemble. In contrast to the microcanonical ense mble, there is a minimum, and not maximum, radius for which metastable states exist. In addition this critical radius is decreasing, and not increasing, with increasing cosmological constant. The minimum temperature for which metastable states exist is decreasing with increasing cosmological constant, while above some positive value of the cosmological constant, there appears a second critical temperature. For lower temperatures than the second critical temperature value, metastable states reappear, indicating a typical reentrant phase transition. The two critical temperatures merge when the cosmological density equals one half the mean density of the system.
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا