ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated mass spectrum generation for new physics

46   0   0.0 ( 0 )
 نشر من قبل Benjamin Fuks
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.

قيم البحث

اقرأ أيضاً

This is a short review about relations between new scalars and mechanisms to generate neutrino masses. We investigate leptohilic scalars whose Yukawa interactions are only with leptons. We discuss possibilities that measurements of their leptonic dec ays provide information on how neutrino masses are generated and on parameters in the neutrino mass matrix (e.g. the lightest neutrino mass).
278 - G.F.Giudice 1996
Review of prospects for discovery of new physics signals at LEP2. The areas covered include SUSY, exotic fermions, BESS models, leptoquarks, virtual effects and CP violating observables.
89 - S. Nandi 2009
In this talk, I present a new framework to understand the long-standing fermion mass hierarchy puzzle. We extend the Standard Model gauge symmetry by an extra local U(1)_S symmetry, broken spontaneously at the electroweak scale. All the SM particles are singlet with respect to this U(1)_S. We also introduce additional flavor symmetries, U(1)_Fs, with flavon scalars F_i, as well as vectorlike quarks and leptons at the TeV scale. The flavon scalars have VEV in the TeV scale. Only the top quark has the usual dimension four Yukawa coupling. EW symmetry breaking to all other quarks and leptons are propagated through the messenger field, S through their interactions involving the heavy vector-like fermions and S, as well as through their interactions involving the vector-like fermions and F_i. In addition the explaining the hierarchy of the charged fermion masses and mixings, the model has several interesting predictions for Higgs decays, flavor changing neutral current processes in the top and the b quark decays, decays of the new singlet scalars to the new Z boson, as well as productions of the new vectorlike quarks. These predictions can be tested at the LHC.
The Compact Linear Collider (CLIC) is a mature option for the future of high energy physics. It combines the benefits of the clean environment of $e^+e^-$ colliders with operation at high centre-of-mass energies, allowing to probe scales beyond the r each of the Large Hadron Collider (LHC) for many scenarios of new physics. This places the CLIC project at a privileged spot in between the precision and energy frontiers, with capabilities that will significantly extend knowledge on both fronts at the end of the LHC era. In this report we review and revisit the potential of CLIC to search, directly and indirectly, for physics beyond the Standard Model.
In the light of the recent result from KamLAND-Zen (KLZ) and GERDA Phase-II, we update the bounds on the effective mass and the new physics parameters, relevant for neutrinoless double beta decay ($0 u beta beta$). In addition to the light Majorana n eutrino exchange, we analyze beyond standard model contributions that arise in Left-Right symmetry and R-Parity violating supersymmetry. The improved limit from KLZ constrains the effective mass of light neutrino exchange down to sub-eV mass regime 0.06 eV. Using the correlation between the $^{136}rm{Xe}$ and $^{76}rm{Ge}$ half-lives, we show that the KLZ limit individually rules out the positive claim of observation of $0 ubetabeta$ for all nuclear matrix element compilation. For the Left-Right symmetry and R-parity violating supersymmetry, the KLZ bound implies a factor of 2 improvement of the effective mass and the new physics parameters. The future ton scale experiments such as, nEXO will further constrain these models, in particular, will rule out standard as well as Type-II dominating LRSM inverted hierarchy scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا