ترغب بنشر مسار تعليمي؟ اضغط هنا

The different varieties of the Suyama-Yamaguchi consistency relation and its violation as a signal of statistical inhomogeneity

24   0   0.0 ( 0 )
 نشر من قبل Yeinzon Rodriguez Garcia Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yeinzon Rodriguez




اسأل ChatGPT حول البحث

We present the different consistency relations that can be seen as variations of the well known Suyama-Yamaguchi (SY) consistency relation tau_{NL} geqslant ((6/5) f_{NL})^2. It has been claimed that the following variation: tau_{NL} ({bf k}_1, {bf k_3}) geqslant (6/5)^2 f_{NL} ({bf k}_1) f_{NL} ({bf k}_3), which we call the fourth variety, in the collapsed (for tau_{NL}) and squeezed (for f_{NL}) limits is always satisfied independently of any physics; however, the proof depends sensitively on the assumption of scale-invariance which only applies for cosmological models involving Lorentz-invariant scalar fields (at least at tree level), leaving room for a strong violation of this variety of the consistency relation when non-trivial degrees of freedom, for instance vector fields, are in charge of the generation of zeta. With this in mind as a motivation, we explicitly state under which conditions the SY consistency relation has been claimed to hold in its different varieties (implicitly) presented in the literature; as a result, we show for the first time that the variety tau_{NL} ({bf k}_1, {bf k}_1) geqslant ((6/5) f_{NL} ({bf k}_1))^2, which we call the fifth variety, is always satisfied even when there is strong scale-dependence as long as statistical homogeneity holds: thus, an observed violation of this specific variety would prevent the comparison between theory and observation, shaking this way the foundations of cosmology as a science. Later, we concern about the existence of non-trivial degrees of freedom, concretely vector fields for which the levels of non-gaussianity have been calculated for very few models, finding that the fourth variety of the SY consistency relation is indeed strongly violated for some specific wavevector configurations while the fifth variety continues to be well satisfied. (Abridged)

قيم البحث

اقرأ أيضاً

Assuming the Lorentz and CPT invariances we show that neutron-antineutron oscillation implies breaking of CP along with baryon number violation -- i.e. two of Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator in the effective Hamiltonian. This operator mixing neutron and antineutron preserves charge conjugation C and breaks P and T. External magnetic field always leads to suppression of oscillations. Its presence does not lead to any new operator mixing neutron and antineutron.
In the standard Cold Dark Matter (CDM) theory for understanding the formation of structure in the universe, there exists a tight connection between the properties of dark matter (DM) haloes, and their formation epochs. Such relation can be expressed in terms of a single key parameter, namely the halo concentration. In this work, we examine the median concentration-mass relation, c(M), at present time, over more than 20 orders of magnitude in halo mass, i.e., from tiny Earth-mass microhalos up to galaxy clusters. The c(M) model proposed by Prada et al. (2012), which links the halo concentration with the r.m.s. amplitude of matter linear fluctuations, describes remarkably well all the available N-body simulation data down to ~10^(-6) Msun microhalos. A clear fattening of the halo concentration-mass relation towards smaller masses is observed, that excludes the commonly adopted power-law c(M) models, and stands as a natural prediction for the CDM paradigm. We provide a parametrization for the c(M) relation that works accurately for all halo masses. This feature in the c(M) relation at low masses has decisive consequences e.g. for gamma-ray DM searches, as it implies more modest boosts of the DM annihilation flux due to substructure, i.e., ~35 for galaxy clusters and ~15 for galaxies like our own, as compared to those huge values adopted in the literature that rely on such power-law c(M) extrapolations. We provide a parametrization of the boosts that can be safely used for dwarfs to galaxy cluster-size halos.
195 - D. J. Brooker 2016
We propose a test of single-scalar inflation based on using the well-measured scalar power spectrum to reconstruct the tensor power spectrum, up to a single integration constant. Our test is a sort of integrated version of the single-scalar consisten cy relation. This sort of test can be used effectively, even when the tensor power spectrum is measured too poorly to resolve the tensor spectral index. We give an example using simulated data based on a hypothetical detection with tensor-to-scalar ratio $r = 0.01$. Our test can also be employed for correlating scalar and tensor features in the far future when the data is good.
We generalize to higher spatial dimensions the Stokes--Einstein relation (SER) and the leading correction to diffusivity in periodic systems, and validate them using numerical simulations. Using these results, we investigate the evolution of the SER violation with dimension in simple hard sphere glass formers. The analysis suggests that the SER violation disappears around dimension d=8, above which SER is not violated. The critical exponent associated to the violation appears to evolve linearly in 8-d below d=8, as predicted by Biroli and Bouchaud [J. Phys.: Cond. Mat. 19, 205101 (2007)], but the linear coefficient is not consistent with their prediction. The SER violation evolution with d establishes a new benchmark for theory, and a complete description remains an open problem.
We test the statistical isotropy (SI) of the $E$-mode polarization of the cosmic microwave background (CMB) radiation observed by the Planck satellite using two statistics, namely, the contour Minkowski Tensor (CMT) and the Directional statistic ($ma thcal{D}$ statistic). The parameter $alpha$ obtained from the CMT provides information of the alignment of structures and can be used to infer statistical properties such as Gaussianity and SI of random fields. The $mathcal{D}$ statistic is based on detecting preferred directionality shown by vectors defined by the field. These two tests are complementary to each other in terms of sensitivity at different angular scales. The CMT is sensitive towards small-scale information present in the CMB map while $mathcal{D}$ statistic is more sensitive at large-scales. We compute $alpha$ and $mathcal{D}$ statistic for the observed $E$-mode of CMB polarization, focusing on the SMICA maps, and compare with the values calculated using FFP10 SMICA simulations which contain both CMB and noise. We find good agreement between the observed data and simulations. Further, in order to specifically analyze the CMB signal in the data, we compare the values of the two statistics obtained from the observed Planck data with the values obtained from isotropic simulations having the same power spectrum, and from SMICA noise simulations. We find no statistically significant deviation from SI using the $alpha$ parameter. From $mathcal{D}$ statistic we find that the data shows slight deviation from SI at large angular scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا