ﻻ يوجد ملخص باللغة العربية
In this paper we derive, starting from the basic principles of Thermodynamics, an extended version of the nonconserved Penrose-Fife phase transition model, in which dynamic boundary conditions are considered in order to take into account interactions with walls. Moreover, we study the well-posedness and the asymptotic behavior of the Cauchy problem for the PDE system associated to the model, allowing the phase configuration of the material to be described by a singular function.
The Penrose-Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equ
We consider parabolic systems with nonlinear dynamic boundary conditions, for which we give a rigorous derivation. Then, we give them several physical interpretations which includes an interpretation for the porous-medium equation, and for certain re
We study a Penrose-Fife phase transition model coupled with homogeneous Neumann boundary conditions. Improving previous results, we show that the initial value problem for this model admits a unique solution under weak conditions on the initial data.
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. The model is equipped with generalized Wentzell-Robin (or dynamic) boundary conditions. This all
In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary c