ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Bloch oscillating transistor near bifurcation threshold

107   0   0.0 ( 0 )
 نشر من قبل Jayanta Sarkar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tendency to bifurcate can often be utilized to improve performance characteristics of amplifiers or even to build detectors. Bloch oscillating transistor is such a device. Here we show that bistable behaviour can be approached by tuning the base current and that the critical value depends on the Josephson coupling energy $E_J$ of the device. We demonstrate record-large current gains for device operation near the bifurcation point at small $E_J$. From our results for the current gains at various $E_J$, we determine the bifurcation threshold on the $E_J$ - base current plane. The bifurcation threshold curve can be understood using the interplay of inter- and intra-band tunneling events.



قيم البحث

اقرأ أيضاً

We examine a Bloch Oscillating Transistor pair as a differential stage for cryogenic low-noise measurements. Using two oppositely biased, nearly symmetric Bloch Oscillating Transistors, we measured the sum and difference signals in the current gain a nd transconductance modes while changing the common mode signal, either voltage or current. From the common mode rejection ratio we find values $sim 20$ dB even under non-optimal conditions. We also characterize the noise properties and obtain excellent noise performance for measurements having source impedances in the M$Omega$ range.
We develop a theoretical model for how organic molecules can control the electronic and transport properties of an underlying transistor channel to whose surface they are chemically bonded. The influence arises from a combination of long-ranged dipol ar electrostatics due to the molecular head-groups, as well as short-ranged charge transfer and interfacial dipole driven by equilibrium band-alignment between the molecular backbone and the reconstructed semiconductor surface atoms.
Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective many-body behavior, has been challenging due to stringent constraints on the band properties. We argue that the flat bands in moire graphene fulfill the basic requirements for observing Bloch oscillations, offering an appealing alternative to the stacked quantum wells used in previous work aiming to access this regime. Bloch-oscillating moire superlattices emit a comb-like spectrum of incommensurate frequencies, a property of interest for converting direct currents into high-frequency currents and developing broad-band amplifiers in THz domain. The oscillations can be synchronized through coupling to an oscillator mode in a photonic or plasmonic resonator. Phase-coherent collective oscillations in the resonant regime provide a realization of current-pumped THz lasing.
120 - C. Anton , T.C.H. Liew , G. Tosi 2012
We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation toward s a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks, revealed through the biorthogonal chiral displacement, and crosschecked with the dynamic spin textures in the generalized quasimomentum-time domain following a quantum quench. Both detection schemes are robust against symmetry-preserving disorders, and yield consistent results with theoretical predictions. Our experiments are performed far away from any boundaries, and therefore underline non-Bloch topological invariants as intrinsic properties of the system that persist in the thermodynamic limit. Our work sheds new light on the experimental investigation of non-Hermitian topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا