ﻻ يوجد ملخص باللغة العربية
We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.
The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different
Detector developments are currently enabling new capabilities in the field of transmission electron microscopy (TEM). We have investigated the limits of a hybrid pixel detector, Medipix3, to record dynamic, time varying, electron signals. Operating w
Potential applications of Zr/Al ODS alloys vests on the irradiation stability of the Y4Zr3O12 dispersoids. Fundamental studies to identify the type of defects are important in order to recognize pathways for damage alleviation. In this context, studi
We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside
The High Energy cosmic-Radiation Detector (HERD) facility is planned to go onboard Chinas Space Station, planned to be operational starting in around 2025 for about 10 years. The main scientific objectives of HERD are the search for signals of dark m