ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative study of tight-binding and ab initio electronic structure calculations focused on magnetic anisotropy in ordered CoPt alloy

588   0   0.0 ( 0 )
 نشر من قبل Jan Zemen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L1_0 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearized augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Greens function formalism which is directly compatible with our TB approach.

قيم البحث

اقرأ أيضاً

Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
On the basis of a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our results are in good agreement with recent experimental measurements on this important magnetic material.
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-principles calculations by introducing the symmetrization post-processing step, which enables the production of Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic workflows, which allow for producing a large number of tight-binding models for large classes of chemically and structurally similar compounds, or materials subject to external influence such as strain. As a particular illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for further study of topological phase transitions in III-V quantum wells.
Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without the presence of long-range magnetic order, whereas NaOsO$_3$ is a $G$-type antiferromagnetic insulator with an orthorhombic $Pnma$ structure. By means of comparative first-principles DFT+$U$ calculations with the inclusion of the spin-orbit coupling, we ($i$) identify the origin of the different structural ($R3c$ vs. $Pnma$) properties using a symmetry-adapted soft mode analysis, ($ii$) provide evidence that all considered exchange-correlation functionals (LDA, PBE, PBEsol, SCAN, and HSE06) and the spin disordered polymorphous descriptions are unsatisfactory to accurately describe the electronic and magnetic properties of both systems simultaneously, and ($iii$) clarify that the distinct electronic (metallic vs. insulating) properties originates mainly from a cooperative steric and magnetic effect. Finally, we find that although at ambient pressure LiOsO$_3$ with a $Pnma$ symmetry and NaOsO$_3$ with a $Rbar{3}c$ symmetry are energetically unfavorable, they do not show soft phonons and therefore are dynamically stable. A pressure-induced structural phase transition from $R3c$ to $Pnma$ for LiOsO$_3$ is predicted, whereas for NaOsO$_3$ no symmetry change is discerned in the considered pressure range.
We present results of systematic fully relativistic first-principles calculations of the uniaxial magnetic anisotropy energy (MAE) of a disordered and partially ordered tetragonal Fe-Co alloy using the coherent potential approximation (CPA). This all oy has recently become a promising system for thin ferromagnetic films with a perpendicular magnetic anisotropy. We find that existing theoretical approaches to homogeneous random bulk Fe-Co alloys, based on a simple virtual crystal approximation (VCA), overestimate the maximum MAE values obtained in the CPA by a factor of four. This pronounced difference is ascribed to the strong disorder in the minority spin channel of real alloys, which is neglected in the VCA and which leads to a broadening of the d-like eigenstates at the Fermi energy and to the reduction of the MAE. The ordered Fe-Co alloys with a maximum L1_0-like atomic long-range order can exhibit high values of the MAE, which, however, get dramatically reduced by small perturbations of the perfect order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا