ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of South Pole ice transparency with the IceCube LED calibration system

113   0   0.0 ( 0 )
 نشر من قبل Dmitry Chirkin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube data with simulations based on the new model is shown.



قيم البحث

اقرأ أيضاً

The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experime nt measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. Th e large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primor dial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important po sition in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا