ﻻ يوجد ملخص باللغة العربية
We give a new perspective on the dynamics of conformal theories realized in the SU(N) gauge theory, when the number of flavors N_f is within the conformal window. Motivated by the RG argument on conformal theories with a finite IR cutoff Lambda_{IR}, we conjecture that the propagator of a meson G_H(t) on a lattice behaves at large t as a power-law corrected Yukawa-type decaying form G_H(t) = c_H exp{(-m_H t)}/t^{alpha_H} instead of the exponentially decaying form c_Hexp{(-m_H t)}, in the small quark mass region where m_H le c Lambda_{IR}: m_H is the mass of the ground state hadron in the channel H and c is a constant of order 1. The transition between the conformal region and the confining region is a first order transition. Our numerical results verify the predictions for the N_f=7 case and the N_f=16 case in the SU(3) gauge theory with the fundamental representation.
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using
Motivated by recent progress on many flavor QCD on a lattice, we investigate conformal/walking dynamics by using Schwinger-Dyson (SD) equation within an improved ladder approximation for two-loop running coupling. By numerically solving the SD equati
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, s
We give a new perspective on the properties of quarks and gluons at finite temperature T in N_f = 2 ~ 6 QCD. We point out the existence of an IR fixed point for the gauge coupling constant at T>T_c (T_c is the chiral phase transition temperature). Ba
We provide the evidence for the existence of partially deconfined phase in large-$N$ gauge theory. In this phase, the SU($M$) subgroup of SU($N$) gauge group deconfines, where $frac{M}{N}$ changes continuously from zero (confined phase) to one (decon