ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism

303   0   0.0 ( 0 )
 نشر من قبل Sudhanwa Patra Dr.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the inverse seesaw extension of the standard model, supersymmetric or non-supersymmetric, while the light left-handed neutrinos are Majorana, the heavy right-handed neutrinos are pseudo-Dirac fermions. We show how one of these latter category of particles can contribute quite significantly to neutrinoless double beta decay. The neutrino virtuality momentum is found to play a crucial role in the non-standard contributions leading to the prediction of the pseudo-Dirac fermion mass in the range of $120, {MeV}-500, {MeV}$. When the Dirac neutrino mass matrix in the inverse seesaw formula is similar to the up-quark mass matrix, characteristic of high scale quark-lepton symmetric origin, the predicted branching ratios for lepton flavor violating decays are also found to be closer to the accessible range of ongoing experiments.



قيم البحث

اقرأ أيضاً

From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.
103 - J.D. Vergados 2016
The observation of neutrinoless double beta decay will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute ne utrino mass scale at the level of a few tens of meV. To achieve the last goal, however, certain hurdles have to be overcome involving particle, nuclear and experimental physics. Particle physics is important since it provides the mechanisms for neutrinoless double beta decay. In this review we emphasize the light neutrino mass mechanism. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the recently developed sophisticated nuclear structure approaches, employing different methods and techniques of calculation. We also examine the question of quenching of the axial vector coupling constant, which may have important consequences on the size of the nuclear matrix elements. From an experimental point of view it is challenging, since the life times are extremely long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with good energy resolution and very low background.
285 - C. H. Jang , B. J. Kim , Y. J. Ko 2018
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based on the normal ordering. This research is intended to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of a light sterile neutrino as a solution to the higher effective mass of the electron neutrino expected by the current experiments. A few short-baseline oscillation experiments gave rise to a limit on the mass of the sterile neutrino and its mixing with the lightest neutrino. We demonstrate that the results of neutrinoless double beta decays can also narrow down the range of the mass and the mixing angle of the light sterile neutrino.
Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.
We quantify the extent to which future experiments will test the existence of neutrinoless double-beta decay mediated by light neutrinos with inverted-ordered masses. While it remains difficult to compare measurements performed with different isotope s, we find that future searches will fully test the inverted ordering scenario, as a global, multi-isotope endeavor. They will also test other possible mechanisms driving the decay, including a large uncharted region of the allowed parameter space assuming that neutrino masses follow the normal ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا