ترغب بنشر مسار تعليمي؟ اضغط هنا

HST/COS Spectra of Three QSOs That Probe The Circumgalactic Medium of a Single Spiral Galaxy: Evidence for Gas Recycling and Outflow

85   0   0.0 ( 0 )
 نشر من قبل Brian Keeney
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used the Cosmic Origins Spectrograph (COS) to obtain far-UV spectra of three closely-spaced QSO sight lines that probe the circumgalactic medium (CGM) of an edge-on spiral galaxy, ESO 157-49, at impact parameters of 74 and 93 kpc near its major axis and 172 kpc along its minor axis. H I Lyalpha absorption is detected at the galaxy redshift in the spectra of all three QSOs, and metal lines of Si III, Si IV, and C IV are detected along the two major-axis sight lines. Photoionization models of these clouds suggest metallicities close to the galaxy metallicity, cloud sizes of ~1 kpc, and gas masses of ~10^4 solar masses. Given the high covering factor of these clouds, ESO 157-49 could harbor ~2x10^9 solar masses of warm CGM gas. We detect no metals in the sight line that probes the galaxy along its minor axis, but gas at the galaxy metallicity would not have detectable metal absorption with ionization conditions similar to the major-axis clouds. The kinematics of the major-axis clouds favor these being portions of a galactic fountain of recycled gas, while two of the three minor-axis clouds are constrained geometrically to be outflowing gas. In addition, one of our QSO sight lines probes a second more distant spiral, ESO 157-50, along its major axis at an impact parameter of 88 kpc. Strong H I Lyalpha and C IV absorption only are detected in the QSO spectrum at the redshift of ESO 157-50.

قيم البحث

اقرأ أيضاً

The Circumgalactic Medium (CGM) of late-type galaxies is characterized using UV spectroscopy of 11 targeted QSO/galaxy pairs at z < 0.02 with the Hubble Space Telescope Cosmic Origins Spectrograph and ~60 serendipitous absorber/galaxy pairs at z < 0. 2 with the Space Telescope Imaging Spectrograph. CGM warm cloud properties are derived, including volume filling factors of 3-5%, cloud sizes of 0.1-30 kpc, masses of 10-1e8 solar masses and metallicities of 0.1-1 times solar. Almost all warm CGM clouds within 0.5 virial radii are metal-bearing and many have velocities consistent with being bound, galactic fountain clouds. For galaxies with L > 0.1 L*, the total mass in these warm CGM clouds approaches 1e10 solar masses, ~10-15% of the total baryons in massive spirals and comparable to the baryons in their parent galaxy disks. This leaves >50% of massive spiral-galaxy baryons missing. Dwarfs (<0.1 L*) have smaller area covering factors and warm CGM masses (<5% baryon fraction), suggesting that many of their warm clouds escape. Constant warm cloud internal pressures as a function of impact parameter ($P/k ~ 10 cm^{-3} K) support the inference that previous COS detections of broad, shallow O VI and Ly-alpha absorptions are of an extensive (~400-600 kpc), hot (T ~ 1e6 K) intra-cloud gas which is very massive (>1e11 solar masses). While the warm CGM clouds cannot account for all the missing baryons in spirals, the hot intra-group gas can, and could account for ~20% of the cosmic baryon census at z ~ 0 if this hot gas is ubiquitous among spiral groups.
In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption ag ainst background sightlines within a galaxys virial radius, as optically thick Lyman-limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R_perp = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen [N(HI) = 10^(19.50 +/- 0.16) cm^-2] we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z / Zsolar) = -2.0 +/- 0.17, or (7-15) x 10^-3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature < 20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities > 0.1 solar, ten times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly-ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modelling are critical to accurately appraise the distribution of metals in the high-redshift CGM.
We present a detailed analysis of the absorption properties of one of the tidal gas streams around the Whale galaxy NGC4631 in the direction of the quasar 2MASSJ12421031+3214268. Our study is based on ultraviolet spectral data obtained with the Cosmi c Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and 21cm-data from the HALOGAS project and the Green Bank Telescope (GBT). We detect strong HI Ly alpha absorption in the velocity range +550 to +800 km s^-1 related to gas from a NGC4631 tidal stream known as Spur 2. We measure a column density of log N(HI)=18.68pm0.15, indicating that the quasar sightline traces the outer boundary of Spur 2 as seen in the 21cm data. Metal absorption in Spur 2 is detected in the lines of OI, CII, SiII, and SiIII in a complex absorption pattern that reflects the multi-phase nature of the gas. We find that the average neutral gas fraction in Spur 2 towards 2MASSJ12421031+3214268 is only 14 percent. This implies that ionized gas dominates the total mass of Spur 2, which then may comprise more than 10^9 M_sun. No significant depletion of Si is observed, showing that Spur 2 does not contain significant amounts of dust. From the measured OI/HI column-density ratio we determine an alpha abundance in Spur 2 of 0.13pm0.07 solar ([alpha/H]=-0.90pm 0.16), which is substantially lower than what is observed in the NGC4631 disk. The low metallicity and low dust content suggest that Spur 2 represents metal-deficient gas stripped off a gas-rich satellite galaxy during a recent encounter with NGC4631.
105 - N. Tejos , S. Lopez , C. Ledoux 2021
We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy (``G1) at $z approx 0.77$. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy we obtain partially-resolved kine matics of MgII in absorption and [OII] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus 4 positions in front of it. The transverse positions cover G1s minor and major axes at impact parameters of $approx 10-30$ kpc and $approx 60$ kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by MgII) and the interstellar medium (traced by [OII]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The MgII velocity dispersion ($sigma approx 30-100$ km s$^{-1}$, depending on position) is of the same order as the modeled galaxy rotational velocity ($v_{rm rot} approx 80$ km s$^{-1}$), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the $zsim 1$ CGM.
241 - Brian A. Keeney 2017
We present basic data and modeling for a survey of the cool, photo-ionized Circum-Galactic Medium (CGM) of low-redshift galaxies using far-UV QSO absorption line probes. This survey consists of targeted and serendipitous CGM subsamples, originally de scribed in Stocke et al. (2013, Paper 1). The targeted subsample probes low-luminosity, late-type galaxies at $z<0.02$ with small impact parameters ($langlerhorangle = 71$ kpc), and the serendipitous subsample probes higher luminosity galaxies at $zlesssim0.2$ with larger impact parameters ($langlerhorangle = 222$ kpc). HST and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper 1, but this value is significantly smaller than found by the COS-Halos survey. We trace much of this difference to the specific values of the low-$z$ meta-galactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain $log{(M/M_{odot})}=10.5pm0.3$, or ~30% of the total baryon reservoir of an $L geq L^*$, star-forming galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا