ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel Observations of the W3 GMC: Clues to the Formation of Clusters of High-Mass Stars

190   0   0.0 ( 0 )
 نشر من قبل Alana Rivera-Ingraham
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The W3 GMC is a prime target for the study of the early stages of high-mass star formation. We have used Herschel data from the HOBYS key program to produce and analyze column density and temperature maps. Two preliminary catalogs were produced by extracting sources from the column density map and from Herschel maps convolved to the 500 micron resolution. Herschel reveals that among the compact sources (FWHM<0.45 pc), W3 East, W3 West, and W3 (OH) are the most massive and luminous and have the highest column density. Considering the unique properties of W3 East and W3 West, the only clumps with on-going high-mass star formation, we suggest a convergent constructive feedback scenario to account for the formation of a cluster with decreasing age and increasing system/source mass toward the innermost regions. This process, which relies on feedback by high-mass stars to ensure the availability of material during cluster formation, could also lead to the creation of an environment suitable for the formation of Trapezium-like systems. In common with other scenarios proposed in other HOBYS studies, our results indicate that an active/dynamic process aiding in the accumulation, compression, and confinement of material is a critical feature of the high-mass star/cluster formation, distinguishing it from classical low-mass star formation. The environmental conditions and availability of triggers determine the form in which this process occurs, implying that high-mass star/cluster formation could arise from a range of scenarios: from large scale convergence of turbulent flows, to convergent constructive feedback or mergers of filaments.



قيم البحث

اقرأ أيضاً

The W3 GMC is a prime target for investigating the formation of high-mass stars and clusters. This second study of W3 within the HOBYS Key Program provides a comparative analysis of subfields within W3 to further constrain the processes leading to th e observed structures and stellar population. Probability density functions (PDFs) and cumulative mass distributions (CMDs) were created from dust column density maps, quantified as extinction Av. The shape of the PDF, typically represented with a lognormal function at low Av breaking to a power-law tail at high Av, is influenced by various processes including turbulence and self-gravity. The breaks can also be identified, often more readily, in the CMDs. The PDF break from lognormal (Av(SF)= 6-10 mag) appears to shift to higher Av by stellar feedback, so that high-mass star-forming regions tend to have higher PDF breaks. A second break at Av > 50 mag traces structures formed or influenced by a dynamic process. Because such a process has been suggested to drive high-mass star formation in W3, this second break might then identify regions with potential for hosting high-mass stars/clusters. Stellar feedback appears to be a major mechanism driving the local evolution and state of regions within W3. A high initial star formation efficiency in a dense medium could result in a self-enhancing process, leading to more compression and favourable star-formation conditions (e.g., colliding flows), a richer stellar content, and massive stars. This scenario would be compatible with the convergent constructive feedback model introduced in our previous Herschel study.
In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class scheme and compared to other classificat ions based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high density layer also shows signs of extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming an spontaneous origin for the isolated massive star(s) powering KR 140.
We analyse the chemical properties of a set of solar vicinity stars, and show that the small dispersion in abundances of alpha-elements at all ages provides evidence that the SFH has been uniform throughout the thick disk. In the context of long time scale infall models, we suggest that this result points either to a limited dependence of the gas accretion on the Galactic radius in the inner disk (R<10 kpc), or to a decoupling of the accretion history and star formation history due to other processes governing the ISM in the early disk, suggesting that infall cannot be a determining parameter of the chemical evolution at these epochs. We argue however that these results and other recent observational constraints -- namely the lack of radial metallicity gradient and the non-evolving scale length of the thick disk -- are better explained if the early disk is viewed as a pre-assembled gaseous system, with most of the gas settled before significant star formation took place -- formally the equivalent of a closed-box model. In any case, these results point to a weak, or non-existent inside-out formation history in the thick disk, or in the first 3-5 Gyr of the formation of the Galaxy. We argue however that the growing importance of an external disk whose chemical properties are distinct from those of the inner disk would give the impression of an inside-out growth process when seen through snapshots at different epochs. However, the progressive, continuous process usually invoked may not have actually existed in the Milky Way.
We present interferometric HI observations of six double-disc stellar counterrotator (2$sigma$) galaxies from the Atlas3D sample. Three are detected in HI emission; two of these are new detections. NGC 7710 shows a modestly asymmetric HI disc, and th e atomic gas in PGC 056772 is centrally peaked but too poorly resolved to identify the direction of rotation. IC 0719, the most instructive system in this study, shows an extended, strongly warped disc of 43 kpc diameter, with a faint tail extending towards its neighbor IC 0718. The gas has likely been accreted from this external source during an encounter whose geometry directed the gas into misaligned retrograde orbits (with respect to the primary stellar body of IC 0719). In the interior, where dynamical time-scales are shorter, the HI has settled into the equatorial plane forming the retrograde secondary stellar disc. This is the first direct evidence that a double-disc stellar counterrotator could be formed through the accretion of retrograde gas. However, the dominant formation pathway for the formation of $2sigma$ galaxies is still unclear. The Atlas3D sample shows some cases of the retrograde accretion scenario and also some cases in which a scenario based on an unusually well-aligned merger is more likely.
We simulate the collision of two Giant Molecular Clouds (GMCs) using the movingmesh magnetohydrodynamical (MHD) code AREPO. We perform a small parameterspace study on how GMC collisions affect the star formation rate (SFR). The pa-rameters we conside r are relative velocity, magnetic field inclination and simulationresolution. From the collsional velocity study we find that a faster collision causes starformation to trigger earlier, however, the overall trend in star formation rate integratethrough time is similar for all. This contradicts the claim that the SFR significantlyincreases as a result of a cloud collision. From varying the magnetic field inclinationwe conclude that the onset of star formation occurs sooner if the magnetic field isparallel to the collisional axis. Resolution tests suggests that higher resolution delaysthe onset of star formation due to the small scale turbulence being more resolved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا