ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Spin and Electronic Reconstructions at the Cuprate-Manganite Interface

158   0   0.0 ( 0 )
 نشر من قبل Benjamin Gray
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a resonant soft X-ray spectroscopy study of the electronic and magnetic structure of the cuprate-manganite interface. Polarized X-ray spectroscopy measurements taken at the Cu L edge reveal up to a five-fold increase in the dichroic signal as compared to past experimental and theoretical values. Furthermore an increase in the degree of interlayer charge transfer up to 0.25e (where e is charge of an electron) per copper ion is observed leading to a profound reconstruction in the orbital scheme for these interfacial copper ions. It is inferred that these enhancement are related to an increase in TMI observed for manganite layers grown with rapidly modulated flux.



قيم البحث

اقرأ أيضاً

We examine the anomalous inverse spin switch behavior in La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO)/YBa$_2$Cu$_3$O$_{7-delta}$ (YBCO)/LCMO trilayers by combined transport studies and polarized neutron reflectometry. Measuring magnetization profiles and magne toresistance in an in-plane rotating magnetic field, we prove that, contrary to many accepted theoretical scenarios, the relative orientation between the two LCMOs magnetizations is not sufficient to determine the magnetoresistance. Rather the field dependence of magnetoresistance is explained by the interplay between the applied magnetic field and the (exponential tail of the) induced exchange field in YBCO, the latter originating from the electronic reconstruction at the LCMO/YBCO interfaces.
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the ma gnetism and spin-orbit coupling at LaMnO3/SrIrO3 (3d-5d oxide) interfaces by tuning the LaMnO3 growth conditions which controls the lattice displacement and spin-correlated interfacial coupling through charge transfer. We report on a tunable and enhanced interface-induced Rashba spin-orbit coupling and Elliot-Yafet spin relaxation mechanism in LaMnO3/SrIrO3 bilayer with change in the underlying magnetic order of LaMnO3. We also observed enhanced spin-orbit coupling strength in LaMnO3/SrIrO3 compared to previously reported SrIrO3 layers. The X-Ray spectroscopy measurement reveals the quantitative valence of Mn and their impact on charge transfer. Further, we performed angle-dependent magnetoresistance measurements, which show signatures of magnetic proximity effect in SrIrO3 while reflecting the magnetic order of LaMnO3. Our work thus demonstrates a new route to engineer the interface induced Rashba spin-orbit coupling and magnetic proximity effect in 3d-5d oxide interfaces which makes SrIrO3 an ideal candidate for spintronics applications.
The interface between the insulators LaAlO$_3$ and SrTiO$_3$ accommodates a two-dimensional electron liquid (2DEL) -- a high mobility electron system exhibiting superconductivity as well as indications of magnetism and correlations. While this flagsh ip oxide heterostructure shows promise for electronics applications, the origin and microscopic properties of the 2DEL remain unclear. The uncertainty remains in part because the electronic structures of such nanoscale buried interfaces are difficult to probe, and is compounded by the variable presence of oxygen vacancies and coexistence of both localized and delocalized charges. These various complications have precluded decisive tests of intrinsic electronic and orbital reconstruction at this interface. Here we overcome prior difficulties by developing an interface analysis based on the inherently interface-sensitive resonant x-ray reflectometry. We discover a high charge density of 0.5 electrons per interfacial unit cell for samples above the critical LaAlO$_3$ thickness, and extract the depth dependence of both the orbital and electronic reconstructions near the buried interface. We find that the majority of the reconstruction phenomena are confined to within 2 unit cells of the interface, and we quantify how oxygen vacancies significantly affect the electronic system. Our results provide strong support for the existence of polarity induced electronic reconstruction, clearly separating its effects from those of oxygen vacancies.
The new two-dimensional (2D) kagome superconductor CsV$_3$Sb$_5$ has attracted much recent attention due to the coexistence of superconductivity, charge order, topology and kagome physics. A key issue in this field is to unveil the unique reconstruct ed electronic structure, which successfully accommodates different orders and interactions to form a fertile ground for emergent phenomena. Here, we report angle-resolved photoemission spectroscopy (ARPES) evidence for two distinct band reconstructions in CsV$_3$Sb$_5$. The first one is characterized by the appearance of new electron energy band at low temperature. The new band is theoretically reproduced when the three dimensionality of the charge order is considered for a band-folding along the out-of-plane direction. The second reconstruction is identified as a surface induced orbital-selective shift of the electron energy band. Our results provide the first evidence for the three dimensionality of the charge order in single-particle spectral function, highlighting the importance of long-range out-of-plane electronic correlations in this layered kagome superconductor. They also point to the feasibility of orbital-selective control of the band structure via surface modification, which would open a new avenue for manipulating exotic phenomena in this system, including superconductivity.
High-Tc superconductivity in cuprates is generally believed to arise from carrier doping an antiferromagnetic Mott (AFM) insulator. Theoretical proposals and emerging experimental evidence suggest that this process leads to the formation of intriguin g electronic liquid crystal phases. These phases are characterized by ordered charge and/or spin density modulations, and thought to be intimately tied to the subsequent emergence of superconductivity. The most elusive, insulating charge-stripe crystal phase is predicted to occur when a small density of holes is doped into the charge-transfer insulator state, and would provide a missing link between the undoped parent AFM phase and the mysterious, metallic pseudogap. However, due to experimental challenges, it has been difficult to observe this phase. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and achieve the lightly-doped charge-transfer insulating state of a cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap at the order of ~1 eV, using spectroscopic-imaging scanning tunneling microscopy, we discover a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Importantly, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and the formation of the Fermi surface. Our work provides new insights into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا