ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

114   0   0.0 ( 0 )
 نشر من قبل Sanshui Xiao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmonband diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene-based opto-electronics applications.

قيم البحث

اقرأ أيضاً

119 - Tetsuyuki Ochiai 2018
We theoretically investigate the second harmonic generation and photon drag effect induced by an incident plane wave to a doped graphene placed on a two-dimensional diffraction grating. The relevant nonlinear conductivity of the graphene is obtained by a semi-classical treatment with a phenomenological relaxation. The grating acts not only as a plasmon coupler but also as a dispersion modulator of the graphene plasmon. As a result, the second harmonic generation is strongly enhanced by exciting the graphene plasmon polariton of the first- and/or second-harmonic frequencies. The photon drag effect is also strongly enhanced by the excitation of the plasmon at the first-harmonic frequency. The direct current induced by the photon drag effect flows both forward and backward directions to the incident light, depending on the modulated plasmon mode concerned.
188 - D. Farnesi , S. Pelli , S. Soria 2021
Optical microresonators are of paramount importance in photonic circuits requiring fine spectral filtering or resonant light recirculation. Key performance metrics improve with increasing resonance quality factor (Q) across all applications. The perf ormance of silicon photonic circuits is often hampered by the low-quality factor of planar silicon microresonators, typically of Q~10^4-10^5. On the other hand, bulk whispering gallery mode resonators provide a wide range of materials with intriguing optical properties and exceptionally high resonant quality factors Q>10^7. However, the efficient coupling between bulk resonators and planar Si photonic waveguides is considered challenging, if not impossible, due to remarkably large mismatch in size and refractive index. Here, we show an efficient method to couple bulk resonators and Si waveguides based on subwavelength metamaterial engineering of silicon. Based on this approach, we experimentally demonstrate coupling between 220-nm-thick Si waveguides and bulk microresonators made of silica, lithium niobate and calcium fluoride with diameters in the 0.3-3.5 mm range, achieving high coupling efficiency of 75-99% and exceptional Q of 10^6-10^7. These results open a new route for the heterogeneous integration of bulk resonators and silicon photonic circuits, with great potential for applications in sensing, microwave-photonics, and quantum photonics, to name a few.
Owing to its two dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a u niversal material to enhance nanoscale radiative heat exchange for any dielectric substrate. Here we report on radiative heat transfer experiments between SiC and a SiO2 sphere which have non matching phonon polariton frequencies, and thus only weakly exchange heat in near field. We observed that the heat flux contribution of graphene epitaxially grown on SiC dominates at short distances. The influence of plasmons on radiative heat transfer is further supported with measurements for doped silicon. These results highlight graphenes strong potential in photonic nearfield and energy conversion devices.
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersio n into account, like the hydrodynamic model. Here we show that nonlocality in the metallic response affects surface plasmons propagating at the interface between a metal and a dielectric with high permittivity. As a direct consequence, any nanoparticle with a radius larger than 20 nm can be expected to be sensitive to spatial dispersion whatever its size. The same behavior is expected for a simple metallic grating allowing the excitation of surface plasmons, just as in Woods famous experiments. Importantly, our work suggests that for any plasmonic structure in a high permittivity dielectric, nonlocality should be taken into account.
Due to strong mode-confinement, long propagation-distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter waveleng ths in order to integrate graphene plasmon concepts with existing mature technologies in the near-infrared region. We investigate localized graphene plasmons supported by graphene nanodisks and experimentally demonstrated graphene plasmon working at 2 {mu}m with the aid of a fully scalable block copolymer self-assembly method. Our results show a promising way to promote graphene plasmons for both fundamental studies and potential applications in the near-infrared window.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا