ﻻ يوجد ملخص باللغة العربية
We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z=0.54), RXJ0152.7-1357 (z=0.83), and RXJ1226.9+3332 (z=0.89); based on high S/N ground-based optical spectroscopy and HST imaging for 17-34 members in each cluster. We find no indication of evolution of sizes or velocity dispersions with redshift at a given dynamical galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm the steeper FP at z=0.86 compared to the low redshift FP, indicating (under the assumption of passive evolution) the formation redshift, z_form, depends on the galaxy velocity dispersion (or mass). z_form varies from z_form=1.24+-0.05 at velocity dispersion of 125 km/s to 1.95+-0.25 at 225 km/s. The three clusters and the low redshift sample follow similar scaling relations between absorption line indices and velocity dispersions. The strength of the higher order Balmer lines Hdelta and Hgamma implies z_form>2.8. From the line strengths we find that [M/H] for MS0451.6-0305 is about 0.2 dex below that of the other clusters, and confirm our previous result that [alpha/Fe] for RXJ0152.7-1357 is about 0.3 dex higher than that of the other clusters. These differences between the high-redshift clusters and the low redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. (abridged)
We present an analysis of stellar populations in passive galaxies in seven massive X-ray clusters at z=0.19-0.89. Based on absorption line strengths measured from our high signal-to-noise spectra, the data support primarily passive evolution of the g
Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for
We calculate stellar masses for massive luminous galaxies at redshift 0.2-0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to u,g
We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find
[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st