ﻻ يوجد ملخص باللغة العربية
The Double Chooz experiment has determined the value of the neutrino oscillation parameter $theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $sin^2 2theta_{13}=0.097pm 0.034(stat.) pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 sigma. This result is consistent with previous measurements of $sin^2 2theta_{13}$.
The establishment of the neutrino oscillations phenomenon as a solution to both solar and atmospheric neutrino anomalies had two consequences: a new oscillation mode, labelled $mathbf{theta_{13}}$, and the possibility to observe CP violation, if $mat
The Double Chooz collaboration presents a measurement of the neutrino mixing angle $theta_{13}$ using reactor $overline{ u}_{e}$ observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 4
The Reactor Experiment for Neutrino Oscillation (RENO) experiment has been taking data using two identical liquid scintillator detectors of 44.5 tons since August 2011. The experiment has observed the disappearance of reactor neutrinos in their inter
Using the Double Chooz detector, designed to measure the neutrino mixing angle $theta_{13}$, the products of $mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3times10^6$ stopping cosmic $
A new measurement of the $theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct