ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin coherent states in NMR quadrupolar system: experimental and theoretical applications

55   0   0.0 ( 0 )
 نشر من قبل Auccaise Estrada Ruben
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudo-nuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo-NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: $ i) $ the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of $ii)$ single-mode and $ iii)$ two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.


قيم البحث

اقرأ أيضاً

We have characterized spin-squeezed states produced at a temperature of $26^circ{mathrm C}$ on a Nuclear Magnetic Resonance (NMR) quadrupolar system. The implementation is carried out in an ensemble of $^{133}$Cs nuclei with spin $I=7/2$ of a lyotrop ic liquid crystal sample. We identify the source of spin squeezing due to the interaction between the quadrupole moment of the nuclei and the electric field gradients internally present in the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing. The quantitative and qualitatively characterization of the spin squeezing phenomena is performed through a squeezing parameter and squeezing angle developed for the two-mode BEC system, and, as well, by the Wigner quasi-probability distribution function. The generality of the present experimental scheme indicates its potential applications on solid state physics.
The Josephson Junction model is applied to the experimental implementation of classical bifurcation in a quadrupolar Nuclear Magnetic Resonance system. There are two regimes, one linear and one nonlinear which are implemented by the radio-frequency t erm and the quadrupolar term of the Hamiltonian of a spin system respectively. Those terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic liquid crystal sample of an ordered ensemble of $^{133}$Cs nuclei with spin $I=7/2$ at room temperature. Our experimental results confirm that bifurcation happens independently of the spin value and of the physical system. With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously to a symmetric two--mode Bose--Einstein condensate.
The optical implementation of the recently proposed unambiguous identification of coherent states is presented. Our system works as a programmable discriminator between two, in general non-orthogonal weak coherent states. The principle of operation l ies in the interference of three light beams - two program states and one unknown coherent state which can be equal to whichever of the two program states. The experiment is based on fiber optics. Its results confirm theoretical predictions and the experimental setup can be straightforwardly extended for higher numbers of program states.
We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of $pi/2$-pulses only and the delays between the pulses can differ. The second scheme contains $varphi$-pulses ($0<varphi<pi$) and has equal delays between them. We calculate entanglement for both schemes for an initial separable state. We show that entanglement is absent for the first scheme at equal delays between $pi/2$-pulses at arbitraty temperatures. Entanglement emerges after several periods of the pulse sequence in the second scheme at $varphi=pi/4$ at milliKelvin temperatures. The necessary number of the periods increases with increasing temperature. We demonstrate the dependence of entanglement on the number of the periods of the multiple-pulse sequence. Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا