ﻻ يوجد ملخص باللغة العربية
Inspiraling binaries of compact objects are primary targets for current and future gravitational-wave observatories. Waveforms computed in General Relativity are used to search for these sources, and will probably be used to extract source parameters from detected signals. However, if a different theory of gravity happens to be correct in the strong-field regime, source-parameter estimation may be affected by a fundamental bias: that is, by systematic errors induced due to the use of waveforms derived in the incorrect theory. If the deviations from General Relativity are not large enough to be detectable on their own and yet these systematic errors remain significant (i.e., larger than the statistical uncertainties in parameter estimation), fundamental bias cannot be corrected in a single observation, and becomes stealth bias. In this article we develop a scheme to determine in which cases stealth bias could be present in gravitational-wave astronomy. For a given observation, the answer depends on the detection signal-to-noise ratio and on the strength of the modified-gravity correction. As an example, we study three representative stellar-mass binary systems that will be detectable with second-generation ground-based observatories. We find that significant systematic bias can occur whether or not modified gravity can be positively detected, for correction strengths that are not currently excluded by any other experiment. Thus, stealth bias may be a generic feature of gravitational-wave detections, and it should be considered and characterized, using expanded models such as the parametrized post-Einstein framework, when interpreting the results of parameter-estimation analyses.
One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain
Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we exam
The first detection of a gravitational-wave signal of a coalescence of two black holes marked the beginning of the era of gravitational-wave astronomy, which opens exciting new possibilities in the fields of astronomy, astrophysics and cosmology. The