ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellites in MW-like hosts: Environment dependence and close pairs

85   0   0.0 ( 0 )
 نشر من قبل Roberto Gonz\\'alez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies showed that an estimate of the likelihood distribution of the Milky Way halo mass can be derived using the properties of the satellites similar to the Large and Small Magellanic Clouds (LMC and SMC). However, it would be straightforward to interpret such an estimate only if the properties of the Magellanic Clouds (MCs) are fairly typical and are not biased by the environment. In this study we explore whether the environment of the Milky Way affects the properties of the SMC and LMC such as their velocities. To test for the effect of the environment, we compare velocity distributions for MC-sized subhalos around Milky Way hosts in a sample selected simply by mass and in the second sample of such halos selected with additional restrictions on the distance to the nearest cluster and the local galaxy density, designed to mimic the environment of the Local Group (LG). We find that satellites in halos in the LG-like environments do have somewhat larger velocities, as compared to the halos of similar mass in the sample without environmental constraints. We derive the host halo likelihood distribution for the samples in the LG-like envirionment and in the control sample and find that the environment does not significantly affect the derived likelihood. We use the updated properties of the SMC and LMC to derive the constraint on the MW halo mass $log{({rm M}_{200} /msol)}=12.06^{+0.31}_{-0.19}$ (90% confidence interval). We also explore the incidence of close pairs with relative velocities and separations similar to those of the LMC and SMC and find that such pairs are quite rare among $Lambda$CDM halos. Taking into account the close separation of the MCs in the Busha et al. 2011 method results in the shift of the MW halo mass estimate to smaller masses, with the peak shifting approximately by a factor of two.[Abridged]

قيم البحث

اقرأ أيضاً

The structure of a dwarf galaxy is an important probe into the effects of stellar feedback and environment. Using an unprecedented sample of 223 low-mass satellites from the ongoing Exploration of Local VolumE Satellites (ELVES) Survey, we explore th e structures of dwarf satellites in the mass range $10^{5.5}<M_star<10^{8.5}$M$_odot$. We survey satellites around $80%$ of the massive, $M_K<-22.4$ mag, hosts in the Local Volume. Our sample of dwarf satellites is complete to luminosities of $M_V<-9$ mag and surface brightness $mu_{0,V}<26.5$ mag arcsec$^{-2}$ within at least $sim200$ projected kpc. We separate the satellites into late- and early-type, finding the mass-size relations are very similar between them, to within $sim5%$. This similarity indicates that the quenching and transformation of a late-type dwarf into an early-type involves only very mild size evolution. Considering the distribution of apparent ellipticities, we infer the intrinsic shapes of the early- and late-type samples. Combining with literature samples, we find that both types of dwarfs get thicker at fainter luminosities but early-types are always rounder at fixed luminosity. Finally, we compare the LV satellites with dwarf samples from the cores of the Virgo and Fornax clusters. We find that the cluster satellites show similar scaling relations to the LV early-type dwarfs but are roughly $10%$ larger at fixed mass, which we interpret as being due to tidal heating in the cluster environments. The dwarf structure results presented here are a useful reference for simulations of dwarf galaxy formation and the transformation of dwarf irregulars into spheroidals.
We extract from the Sloan Digital Sky Survey a sample of 347 systems involving early type galaxies separated by less than 30 kpc, in projection, and 500 km/s in radial velocity. These close pairs are likely progenitors of dry mergers. The (optical) s pectra is used to determine how the interaction affects the star formation history and nuclear activity of the galaxies. The emission lines (or lack thereof) are used to classify the sample into AGN, star forming or quiescent. Increased AGN activity and reduced star formation in early-type pairs that already appear to be interacting indicate that the merging process changes the nature of nebular activity, a finding that is also supported by an increase in AGN luminosity with decreasing pair separation. Recent star formation is studied on the absorption line spectra, both through principal component analysis as well as via a comparison of the spectra with composite stellar population models. We find that the level of recent star formation in close pairs is raised relative to a control sample of early-type galaxies. This excess of residual star formation is found throughout the sample of close pairs and does not correlate with pair separation or with visual signs of interaction. Our findings are consistent with a scenario whereby the first stage of the encounter (involving the outer parts of the halos) trigger residual star formation, followed by a more efficient inflow towards the centre -- switching to an AGN phase -- after which the systems are quiescent.
We calculate the probability that a Milky-Way-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the LCDM model are in good agreement with observations of a large sa mple of SDSS galaxies. Under the sub-halo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v_max, we make detailed comparisons to similar measurements using SDSS DR7 data by Liu et al. (2010). Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, Milky Way-luminosity hosts have just a sim 10% chance of hosting two satellites similar to the Magellanic Clouds. In addition, we present a prediction for the probability for a host galaxy to have Nsats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass- luminosity relation and because of variations in the star formation efficiency with halo mass.
We investigate the claim that the largest subhaloes in high resolution dissipationless cold dark matter (CDM) simulations of the Milky Way are dynamically inconsistent with observations of its most luminous satellites. We find that the inconsistency is largely attributable to the large values of sigma_8 and n_s adopted in the discrepant simulations producing satellites that form too early and therefore are too dense. We find the tension between observations and simulations adopting parameters consistent with WMAP9 is greatly diminished making the satellites a sensitive test of CDM. We find the Via Lactea II halo to be atypical for haloes in a WMAP3 cosmology, a discrepancy that we attribute to its earlier formation epoch than the mean for its mass. We also explore warm dark matter (WDM) cosmologies for 1--4 keV thermal relics. In 1 keV cosmologies subhaloes have circular velocities at kpc scales ~ 60% lower than their CDM counterparts, but are reduced by only 10% in 4 keV cosmologies. Since relic masses < 2-3 keV are ruled out by constraints from the number of Milky Way satellites and Lyman-alpha forest, WDM has a minor effect in reducing the densities of massive satellites. Given the uncertainties on the mass and formation epoch of the Milky Way, the need for reducing the satellite densities with baryonic effects or WDM is alleviated.
77 - Jingjing Shi 2017
The simplest analyses of halo bias assume that halo mass alone determines halo clustering. However, if the large scale environment is fixed, then halo clustering is almost entirely determined by environment, and is almost completely independent of ha lo mass. We show why. Our analysis is useful for studies which use the environmental dependence of clustering to constrain cosmological and galaxy formation models. It also shows why many correlations between galaxy properties and environment are merely consequences of the underlying correlations between halos and their environments, and provides a framework for quantifying such inherited correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا