ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between lattice and spin states degree of freedom in the FeSe superconductor: dynamic spin state instabilities

113   0   0.0 ( 0 )
 نشر من قبل Peter Lemmens
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polarized Raman-scattering spectra of superconducting, single-crystalline FeSe evidence pronounced phonon anomalies with temperature reduction. A large 6.5% hardening of the B_1g(Fe) phonon mode is attributed to the suppression of local fluctuations of the iron spin state with the gradual decrease of the iron paramagnetic moment. The ab-initio lattice dynamic calculations support this conclusion. The enhancement of the low-frequency spectral weight above the structural phase transition temperature T_s and its change below T_s is discussed in relation with the opening of an energy gap between low (S=0) and higher spin states which prevents magnetic order in FeSe. The very narrow phonon line widths compared to observations in FeTe suggests the absence of intermediate spin states in the fluctuating spin state manifold in FeSe.



قيم البحث

اقرأ أيضاً

Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i ron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at $T_s=90$ K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below $T_s$. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolve d puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at $mathbf{Q}_1=(1, 0)$ and $mathbf{Q}_2=(0, 1)$ of twin-free FeSe are expected to behave differently below $T_s$. Although anisotropic spin fluctuations below 10 meV between $mathbf{Q}_1$ and $mathbf{Q}_2$ have been unambiguously observed by inelastic neutron scattering around $T_c (<<T_s)$, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition $T_s$. Here we use resonant inelastic x-ray scattering (RIXS) to probe the high-energy magnetic excitations of uniaxial-strain detwinned FeSe. A prominent anisotropy between the magnetic excitations along the $H$ and $K$ directions is found to persist to $sim200$ meV, which is even more pronounced than the anisotropy of spin waves in BaFe$_2$As$_2$. This anisotropy decreases gradually with increasing temperature and finally vanishes at a temperature around the nematic transition temperature $T_s$. Our results reveal an unprecedented strong spin-excitation anisotropy with a large energy scale well above the $d_{xz}/d_{yz}$ orbital splitting, suggesting that the nematic phase transition is primarily spin-driven. Moreover, the measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective. Our findings provide the much-needed understanding of the mechanism for the nematicity of FeSe and point to a unified description of the correlation physics across seemingly distinct classes of Fe-based superconductors.
In most magnetically-ordered iron pnictides, the magnetic moments lie in the FeAs planes, parallel to the modulation direction of the spin stripes. However, recent experiments in hole-doped iron pnictides have observed a reorientation of the magnetic moments from in-plane to out-of-plane. Interestingly, this reorientation is accompanied by a change in the magnetic ground state from a stripe antiferromagnet to a tetragonal non-uniform magnetic configuration. Motivated by these recent observations, here we investigate the origin of the spin anisotropy in iron pnictides using an itinerant microscopic electronic model that respects all the symmetry properties of a single FeAs plane. We find that the interplay between the spin-orbit coupling and the Hunds rule coupling can account for the observed spin anisotropies, including the spin reorientation in hole-doped pnictides, without the need to invoke orbital or nematic order. Our calculations also reveal an asymmetry between the magnetic ground states of electron- and hole-doped compounds, with only the latter displaying tetragonal magnetic states.
156 - T. Hattori , K. Karube , Y. Ihara 2013
In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fie lds perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].
We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patter ns of the bound (Yu-Shiba-Rusinov) states of magnetic impurities in 2-dimensional square lattice. We also address the peculiar bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization which has been recently reported by S. Jeon et al., [Science 358, 772 (2017)]. Finally, we study leakage of these polarized Majorana quasiparticles on the side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet-doublet phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا