ترغب بنشر مسار تعليمي؟ اضغط هنا

Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis

218   0   0.0 ( 0 )
 نشر من قبل Davide Farnocchia Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the risk of an Earth impact for asteroid (99942) Apophis by means of a statistical analysis accounting for the uncertainty of both the orbital solution and the Yarkovsky effect. We select those observations with either rigorous uncertainty information provided by the observer or a high established accuracy. For the Yarkovsky effect we perform a Monte Carlo simulation that fully accounts for the uncertainty in the physical characterization, especially for the unknown spin orientation. By mapping the uncertainty information onto the 2029 b-plane and identifying the keyholes corresponding to subsequent impacts we assess the impact risk for future encounters. In particular, we find an impact probability greater than 10^-6 for an impact in 2068. We analyze the stability of the impact probability with respect to the assumptions on Apophis physical characterization and consider the possible effect of the early 2013 radar apparition.



قيم البحث

اقرأ أيضاً

180 - J. Licandro 2015
The potentially hazardous asteroid (PHA) (99942) Apophis is one of the most remarkable near-Earth asteroids (NEA) in terms of impact hazard. A good determination of its surface thermal inertia is very important in order to evaluate the Yarkovsky effe ct on its orbital evolution. We present thermal infrared observations obtained on January 29, 2013, with CanariCam mid-infrared camera/spectrograph attached to the Gran Telescopio CANARIAS (GTC, Roque de los Muchachos Observatory, La Palma, Spain) using the Si2-8.7, Si6-12.5, and Q1-17.65 filters with the aim of deriving Apophis diameter ($D$), geometric albedo ($p_V$), and thermal inertia ($Gamma$). We performed a detailed thermophysical model analysis of the GTC data combined with previously published thermal data obtained using Herschel Space Observatory PACS instrument at 70, 100, and 160 $mu$m.The thermophysical model fit of the data favors low surface roughness solutions (within a range of roughness slope angles $rms$ between 0.1 and 0.5), and constrains the effective diameter, visible geometric albedo, and thermal inertia of Apophis to be $D_{eff} =$~380 -- 393 m, $p_V = $~0.24--0.33 (assuming absolute magnitude $H = 19.09 pm 0.19$) and $Gamma =$~50 -- 500 Jm$^{-2}$ s$^{-0.5}$ K$^{-1}$, respectively.
We aim at providing a preliminary approach on the dynamics of a spacecraft in orbit about the asteroid (99942) Apophis during its Earth close approach. The physical properties from the polyhedral shape of the target are derived assigning each tetrahe dron to a point mass in its center. That considerably reduces the computation processing time compared to previous methods to evaluate the gravitational potential. The surfaces of section close to Apophis are build considering or not the gravitational perturbations of the Sun, the planets, and the SRP. The Earth is the one that most affects the invisticated region making the vast majority of the orbits to collide or escape from the system. Moreover, from numerical analysis of orbits started on March 1, 2029, the less perturbed region is characterized by the variation of the semimajor axis of 40-days orbits, which do not exceed 2 km very close to the central body ($a < 4$ km, $e < 0.4$). However, no regions investigated could be a possible option for inserting a spacecraft into natural orbits around Apophis during the close approach with our planet. Finally, to solve the stabilization problem in the system, we apply a robust path following control law to control the orbital geometry of a spacecraft. At last, we present an example of successful operation of our orbit control with a total $bigtriangleup v$ of 0.495 m/s for 60 days. All our results are gathered in the CPM-ASTEROID database, which will be regularly updated by considering other asteroids.
ESA and NASA maintain asteroid hazard lists that contain all known asteroids with a non zero chance of colliding with the Earth in the future. Some software tools exist that are, either, capable of calculating the impact points of those asteroids, or that can estimate the impact effects of a given impact incident. However, no single tool is available that combines both aspects and enables a comprehensive risk analysis. The question is, thus, whether tools that can calculate impact location may be used to obtain a qualitative understanding of the asteroid impact risk distribution. To answer this question, two impact risk distributions that control for impact effect modelling were generated and compared. The Asteroid Risk Mitigation Optimization and Research (ARMOR) tool, in conjunction with the freely available software OrbFit, was used to project the impact probabilities of listed asteroids with a minimum diameter of 30 m onto the surface of the Earth representing a random sample (15% of all objects) of the hazard list. The resulting 261 impact corridors were visualized on a global map. Furthermore, the impact corridors were combined with Earth population data to estimate the simplified risk (without impact effects) and advanced risk (with impact effects) associated with the direct asteroid impacts that each nation faces from present to 2100 based on this sample. The relationship between risk and population size was examined for the 40 most populous countries and it was apparent that population size is a good proxy for relative risk. The advanced and simplified risk distributions were compared and the alteration of the results based on the introduction of physical impact effects was discussed. Population remained a valid proxy for relative impact risk, but the inclusion of impact effects resulted in significantly different risks, especially when considered at the national level.
Any population of asteroids, like asteroid families, will disperse in semi-major axis due to the Yarkovsky effect. The amount of drift is modulated by the asteroid spin state evolution which determines the balance between the diurnal and seasonal Yar kovsky force. The asteroids spin state is, in turn, controlled in part by the YORP effect. The otherwise smooth evolution of an asteroid can be abruptly altered by collisions, which can cause impulsive changes in the spin state and can move the asteroid onto a different YORP track. In addition, collisions may also alter the YORP parameters by changing the superficial features and overall shape of the asteroid. Thus, the coupling between YORP and Yarkovsky is also strongly affected by the impact history of each body. To investigate this coupling we developed a statistical code modeling the time evolution of semi--major axis under YORP-Yarkovsky coupling. It includes the contributions of NYORP (normal YORP), TYORP (tangential YORP) and collisions whose effects are deterministically calculated and not added in a statistical way. We find that both collisions and TYORP increase the dispersion of a family in semi-major axis by making the spin axis evolution less smooth and regular. We show that the evolution of a familys structure with time is complex and collisions randomize the YORP evolution. In our test families we do not observe the formation of a YORP-eye in the semi-major axis vs. diameter distribution, even after a long period of time. If present, the YORP-eye might be a relic of an initial ejection velocity pattern of the collisional fragments.
An asteroid impact is a low probability event with potentially devastating consequences. The Asteroid Risk Mitigation Optimization and Research (ARMOR) software tool calculates whether a colliding asteroid experiences an airburst or surface impact an d calculates effect severity as well as reach on the global map. To calculate the consequences of an impact in terms of loss of human life, new vulnerability models are derived that connect the severity of seven impact effects (strong winds, overpressure shockwave, thermal radiation, seismic shaking, ejecta deposition, cratering and tsunamis) with lethality to human populations. With the new vulnerability models ARMOR estimates casualties of an impact under consideration of the local population and geography. The presented algorithms and models are employed in two case studies to estimate total casualties as well as the damage contribution of each impact effect. The case studies highlight that aerothermal effects are most harmful except for deep water impacts, where tsunamis are the dominant hazard. Continental shelves serve a protective function against the tsunami hazard caused by impactors on the shelf. Furthermore, the calculation of impact consequences facilitates asteroid risk estimation to better characterize a given threat and the concept of risk as well as its applicability to the asteroid impact scenario are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا