ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of extrasolar planets and their host stars - a case study of HAT-P-7

89   0   0.0 ( 0 )
 نشر من قبل Vincent Van Eylen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from the Kepler satellite (Q0-Q11) are used to study HAT-P-7. The satellites data are extremely valuable for asteroseismic studies of stars and for observing planetary transits; in this work we do both. An asteroseismic study of the host star improves the accuracy of the stellar parameters derived by Christensen-Dalsgaard et al. (2010), who followed largely the same procedure but based the analysis on only one month of Kepler data. The stellar information is combined with transit observations, phase variations and occultations to derive planetary parameters. In particular, we confirm the presence of ellipsoidal variations as discovered by Welsh et al. (2010), but revise their magnitude, and we revise the occultation depth (Borucki et al. 2009), which leads to different planetary temperature estimates. All other stellar and planetary parameters are now more accurately determined.

قيم البحث

اقرأ أيضاً

158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
135 - G. A. Bakos 2010
We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff =4595+/-80 K, and metallicity [Fe/H]=+0.35+/-0.08. HAT-P-20b has a mass of 7.246+/-0.187 MJ, and radius of 0.867+/-0.033 RJ yielding a mean density of 13.78+/-1.50 gcm^-3 , which is the second highest value among all known exoplanets. HAT-P-21b orbits a V=11.685 G3 dwarf on an eccentric (e=0.2280+/-0.016) orbit, with a period of P=4.1244810+/-000007d. The host star has a mass of 0.95+/-0.04Msun, radius of 1.10+/-0.08Rsun, Teff=5588+/-80K, and [Fe/H]=+0.01+/-0.08. HAT-P-21b has a mass of 4.063+/-0.161MJ, and radius of 1.024+/-0.092RJ. HAT-P-22b orbits the V=9.732 G5 dwarf HD233731, with P=3.2122200+/-0.000009d. The host star has a mass of 0.92+/-0.03Msun, radius of 1.04+/-0.04Rsun, Teff=5302+/-80K, and metallicity of +0.24+/-0.08. The planet has a mass of 2.147+/-0.061 MJ, and compact radius of 1.080+/-0.058RJ. The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits a V=12.432 G0 dwarf star, with a period P=1.212884+/-0.000002d. The host star has a mass of 1.13+/-0.04sun, radius of 1.20+/-0.07Rsun, Teff=5905+/-80K, and [Fe/H]=+0.15+/-0.04. The planetary companion has a mass of 2.090+/-0.111MJ, and radius of 1.368+/-0.090RJ (abridged).
We report the discovery and characterization of 7 transiting exoplanets from the HATNet survey. The planets, which are hot Jupiters and Saturns transiting bright sun-like stars, include: HAT-P-58b (with mass Mp = 0.37 MJ, radius Rp = 1.33 RJ, and orb ital period P = 4.0138 days), HAT-P-59b (Mp = 1.54 MJ, Rp = 1.12 RJ, P = 4.1420 days), HAT-P-60b (Mp = 0.57 MJ, Rp = 1.63 RJ, P = 4.7948 days), HAT-P-61b (Mp = 1.06 MJ, Rp = 0.90 RJ, P = 1.9023 days), HAT-P-62b (Mp = 0.76 MJ, Rp = 1.07 RJ, P = 2.6453 days), HAT-P-63b (Mp = 0.61 MJ, Rp = 1.12 RJ, P = 3.3777 days), and HAT-P-64b (Mp = 0.58 MJ, Rp = 1.70 RJ, P = 4.0072 days). The typical errors on these quantities are 0.06 MJ, 0.03 RJ, and 0.2seconds, respectively. We also provide accurate stellar parameters for each of the hosts stars. With V = 9.710+/-0.050mag, HAT-P-60 is an especially bright transiting planet host, and an excellent target for additional follow-up observations. With Rp = 1.703+/-0.070 RJ, HAT-P-64b is a highly inflated hot Jupiter around a star nearing the end of its main-sequence lifetime, and is among the largest known planets. Five of the seven systems have long-cadence observations by TESS which are included in the analysis. Of particular note is HAT-P-59 (TOI-1826.01) which is within the Northern continuous viewing zone of the TESS mission, and HAT-P-60, which is the TESS candidate TOI-1580.01.
The vast majority of extrasolar planets are detected by indirect detection methods such as transit monitoring and radial velocity measurements. While these methods are very successful in detecting short-periodic planets, they are mostly blind to wide sub-stellar or even stellar companions on long orbits. In our study we present high resolution imaging observations of 63 exoplanet hosts carried out with the lucky imaging instrument AstraLux at the Calar Alto 2.2m telescope as well as with the new SPHERE high resolution adaptive optics imager at the ESO/VLT in the case of a known companion of specific interest. Our goal is to study the influence of stellar multiplicity on the planet formation process. We detected and confirmed 4 previously unknown stellar companions to the exoplanet hosts HD197037, HD217786, Kepler-21 and Kepler-68. In addition, we detected 11 new low-mass stellar companion candidates which must still be confirmed as bound companions. We also provide new astrometric and photometric data points for the recently discovered very close binary systems WASP-76 and HD2638. Furthermore, we show for the first time that the previously detected stellar companion to the HD185269 system is a very low mass binary. Finally we provide precise constraints on additional companions for all observed stars in our sample.
Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar dust produced by colliding planetesimals are therefore powerful probes of the formation histories of known planets. Here we present new Spitzer IRS spectrophotometry of 111 Solar-type stars, including 105 planet hosts. Our observations reveal 11 debris disks, including two previously undetected debris disks orbiting HD 108874 and HD 130322. Combining our 32 micron spectrophotometry with previously published MIPS photometry, we find that the majority of debris disks around planet hosts have temperatures in the range 60 < T < 100 K. Assuming a dust temperature T = 70 K, which is representative of the nine debris disks detected by both IRS and MIPS, we find that debris rings surrounding Sunlike stars orbit between 15 and 240 AU, depending on the mean particle size. Our observations imply that the planets detected by radial-velocity searches formed within 240 AU of their parent stars. If any of the debris disks studied here have mostly large, blackbody emitting grains, their companion giant planets must have formed in a narrow region between the ice line and 15 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا