ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control of single photons in the cross resonator arrays via the dark state mechanism

64   0   0.0 ( 0 )
 نشر من قبل Tian Tian
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the single photon transfer in a hybrid system where the normal modes of two coupled resonator arrays interact with two transition arms of a ?-type atom localized in the intersectional resonator. It is found that, due to the Fano-Feshbach effect based on the dark state of the ?-type atom, the photon transfer in one array can be well controlled by the bound state of the photon in the other array. This conceptual setup could be implemented in some practical cavity QED system to realize a quantum switch for single photon.

قيم البحث

اقرأ أيضاً

Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Pre paring the mechanical resonator in non-classical states enables an optomechanical Stern-Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor.
We propose related schemes to generate arbitrarily shaped single photons, i.e. photons with an arbitrary temporal profile, and coherent state superpositions using simple optical elements. The first system consists of two coupled cavities, a memory ca vity and a shutter cavity, containing a second order optical nonlinearity and electro-optic modulator (EOM) respectively. Photodetection events of the shutter cavity output herald preparation of a single photon in the memory cavity, which may be stored by immediately changing the optical length of the shutter cavity with the EOM after detection. On-demand readout of the photon, with arbitrary shaping, can be achieved through modulation of the EOM. The second scheme consists of a memory cavity with two outputs which are interfered, phase shifted, and measured. States that closely approximate a coherent state superposition can be produced through postselection for sequences of detection events, with more photon detection events leading to a larger superposition. We furthermore demonstrate that `No-Knowledge Feedback can be easily implemented in this system and used to preserve the superposition state, as well as provide an extra control mechanism for state generation.
50 - Lu Qi , Guo-Li Wang , Shutian Liu 2020
We propose a scheme to achieve the analogous interface-state laser by dint of the interface between the two intermediate-resonator-coupled non-Hermitian resonator chains. We find that, after introducing the couplings between the two resonator chains and the intermediate resonator at the interface, the photons of the system mainly gather into the three resonators near the intermediate resonator. The phenomenon of the photon gathering towards the certain resonators is expected to construct the photon storage and even the laser generator. We reveal that the phenomenon is induced via the joint effect between the isolated intermediate resonator and two kinds of non-Hermitian skin effects. Specially, we investigate the interface-state laser in topologically trivial non-Hermitian resonator array in detail. We find that the pulsed interface-state laser can be achieved accompanying with the intermittent proliferation of the photons at the intermediate resonator when an arbitrary resonator is excited. Also, we reveal that the pulsed interface-state laser in the topologically trivial non-Hermitian resonator array is immune to the on-site defects in some cases, whose mechanism is mainly induced by the nonreciprocal couplings instead of the protection of topology. Our scheme provides a promising and excellent platform to investigate interface-state laser in the micro-resonator array.
We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes, as well as inter-convert them and change their frequency. We show that such quantum buffers optimally filter out tempor al-spectral noise; producing identical single-photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots and can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability.
Radical pairs and the dynamics they undergo are prevalent in many chemical and biological systems. Specifically, it has been proposed that the radical pair mechanism results from a relatively strong hyperfine interaction with its intrinsic nuclear sp in environment. While the existence of this mechanism is undisputed, the nanoscale details remain to be experimentally shown. We analyze here the role of a quantum sensor in detecting the spin dynamics (non-Markovian) of individual radical pairs in the presence of a weak magnetic field. We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution. We envisage these findings having far-reaching implications to the understanding of the physical mechanism in magnetoreception and other bio-chemical processes with a microscopic detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا