ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Populations in the Central 0.5 pc of the Galaxy I: A New Method for Constructing Luminosity Functions and Surface-Density Profiles

76   0   0.0 ( 0 )
 نشر من قبل Jessica Lu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Ways central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K = 15.5 mag, which corresponds to ~10 msun for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of 3 from 4 to 14 (0.16 pc to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, $Sigma(R) propto R^{-Gamma}$, for the young stars and late-type giants are consistent with earlier results ($Gamma_{early} = 0.93 pm 0.09$, $Gamma_{late} = 0.16 pm 0.07$). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared to previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

قيم البحث

اقرأ أيضاً

The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, i ncluding the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. 2013. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is alpha = 1.7 +/- 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5-5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 - 37,000 msun above 1 msun and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.
The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that $g-i$ color and ste llar metallicity [Z/H] correlate more strongly with gravitational potential $Phi$ than with mass $M$, whereas stellar population age correlates best with surface density $Sigma$. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--$Phi$, [Z/H]--$Phi$, and age--$Sigma$ relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [$alpha$/Fe], we find comparable results for trends with $Phi$ and $Sigma$, with both being significantly stronger than the [$alpha$/Fe]-$M$ relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--$Phi$ diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [$alpha$/Fe] relations with $Sigma$: (a) the age--$Sigma$ and [$alpha$/Fe]--$Sigma$ correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the $Sigma_{SFR}proptoSigma_{gas}$ relation in their disk-dominated progenitors.
A pioneering study showed that the fine structure in the luminosity function (LF) of young star clusters contains information about the evolutionary stage (age) and composition of the stellar population. The notable features include the H-peak, which is the result of the onset of hydrogen burning turning pre-main sequence stars into main sequence stars. The feature moves toward the faint end of the LF, and eventually disappears as the population evolves. Another detectable feature is the Wielen dip, a dip at M_V ~ 7 mag in the LF first identified in 1974 for stars in the solar environment. Later studies also identified this feature in the LF of star clusters. The Wielen dip is caused by the increased importance of H- opacity in a certain range of low-mass stars. We studied the detailed structure in the luminosity function using the data from Gaia DR2 and PARSEC stellar evolution models with the aim to further our understanding of young stellar populations. We analyzed the astrometric properties of stars in the solar neighborhood (< 20 pc) and in various relatively nearby (< 400 pc) young (< 50 Myr) open clusters and OB associations, and compare the features in the luminosity function with those generated by PARSEC models. The Wielen dip is confirmed in the LF of all the populations, including the solar neighborhood, at M_G ~7 mag. The H-peak is present in the LF of the field stars in the solar neighborhood. It likely signals that the population is mixed with a significant number of stars younger than 100 Myr. The H-peak is found in the LF of young open clusters and OB associations, and its location varies with age. Our observations with Gaia DR2 confirm the evolution of the H-peak from 5 Myr up to 47 Myr. The fine structure in the luminosity function in young stellar populations can be used to estimate their age.
We started a photometric survey using the WFC3/UVIS instrument onboard the Hubble Space Telescope to search for multiple populations within Magellanic Cloud star clusters at various ages. In this paper, we introduce this survey. As first results of t his programme, we also present multi-band photometric observations of NGC 121 in different filters taken with the WFC3/UVIS and ACS/WFC instruments. We analyze the colour-magnitude diagram (CMD) of NGC 121, which is the only classical globular cluster within the Small Magellanic Cloud. Thereby, we use the pseudo-colour C_(F336W,F438W,F343N)=(F336W-F438W)-(F438W-F343N) to separate populations with different C and N abundances. We show that the red giant branch splits up in two distinct populations when using this colour combination. NGC 121 thus appears to be similar to Galactic globular clusters in hosting multiple populations. The fraction of enriched stars (N rich, C poor) in NGC 121 is about 32% +/- 3%, which is lower than the median fraction found in Milky Way globular clusters. The enriched population seems to be more centrally concentrated compared to the primordial one. These results are consistent with the recent results by Dalessandro et al. (2016). The morphology of the Horizontal Branch in a CMD using the optical filters F555W and F814W is best produced by a population with a spread in Helium of Delta(Y) =0.025+/-0.005.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا