We provide an intergral lift of the combinatorial definition of Heegaard Floer homology for nice diagrams, and show that the proof of independence using convenient diagrams adapts to this setting.
Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a s
tructural property of the $d$-invariants of surgeries on certain algebraically split links.
We show that every 3--manifold admits a Heegaard diagram in which a truncated version of Heegaard Floer homology (when the holomorpic disks pass through the basepoints at most once) can be computed combinatorially.