ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial Heegaard Floer homology and sign assignments

164   0   0.0 ( 0 )
 نشر من قبل Andras I. Stipsicz
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an intergral lift of the combinatorial definition of Heegaard Floer homology for nice diagrams, and show that the proof of independence using convenient diagrams adapts to this setting.



قيم البحث

اقرأ أيضاً

222 - Eaman Eftekhary 2008
Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
135 - Eaman Eftekhary 2008
We give a precise description of splicing formulas from a previous paper in terms of knot Floer complex associated with a knot in homology sphere.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a s tructural property of the $d$-invariants of surgeries on certain algebraically split links.
We show that every 3--manifold admits a Heegaard diagram in which a truncated version of Heegaard Floer homology (when the holomorpic disks pass through the basepoints at most once) can be computed combinatorially.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا