ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Shooter spectroscopy of FU Tau A

118   0   0.0 ( 0 )
 نشر من قبل Beate Stelzer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.Stelzer




اسأل ChatGPT حول البحث

We have analyzed a broad-band optical and near-infrared spectrum of FU Tau A, a presumed young brown dwarf in the Taurus star forming region that has intrigued both theorists and observers by its over-luminosity in the HR diagram with respect to standard pre-main sequence evolutionary models. The new data, obtained with the X-Shooter spectrograph at the Very Large Telescope, include an unprecedented wealth of information on stellar parameters and simultaneously observed accretion and outflow indicators for FU Tau A. We present the first measurements of gravity (log g = 3.5 +- 0.5), radial velocity (RV = 22.5 +- 2.9 km/s), rotational velocity (v sin(i) = 20 +- 5 km/s) and lithium equivalent width (W_Li = 430 +- 20 mAA) for FUTau A. From the rotational velocity and the published period we infer a disk inclination of i ~ 50^deg. The lithium content is much lower than theoretically expected for such a young very low mass object, adding another puzzling feature to this objects properties. We determine the mass accretion rate of FU Tau A from comparison of the luminosities of 24 emission lines to empirical calibrations from the literature and find a mean of log (dM/dt)_acc [M_sun/yr] = -9.9 +- 0.2. The accretion rate determined independently from modeling of the excess emission in the Balmer and Paschen continua is consistent with this value. The corresponding accretion luminosity is too small to make a significant contribution to the bolometric luminosity. The existence of an outflow in FU Tau A is demonstrated through the first detection of forbidden emission lines from which we obtain an estimate for the mass loss rate, log (dM/dt)_out [M_sun/yr] < -10.4. The mass outflow and inflow rates can be combined to yield (dM/dt)_out / (dM/dt)_acc ~ 0.3, a value that is in agreement with jet launching models.



قيم البحث

اقرأ أيضاً

600 - N. Lodieu 2015
The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-1 1000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is the first of its kind. Similarly, we assess the strength of other alkali lines (e.g. pseudo-equivalent widths of 6-7 Angstroms for RbI and 4-7 Angstroms for CsI) present in the optical and near-infrared regions and compare with estimates for L and T dwarfs. We also derive effective temperatures and luminosities of each component of the binary: -4.66+/-0.08 dex and 1305(+180)(-135) for the L dwarf and -4.68+/-0.13 dex and 1320(+185)(-135) for the T dwarf, respectively. Using our radial velocity determinations, the binary does not appear to belong to any of the well-known moving group. Our preliminary theoretical analysis of the optical and J-band spectra indicates that the L- and T-type spectra can be reproduced with a single temperature and gravity but different relative chemical abundances which impact strongly the spectral energy distribution of L/T transition objects.
We present broad-band mid-resolution X-Shooter/VLT spectra for four brown dwarfs of the TW Hya association. Our targets comprise substellar analogs representing the different evolutionary phases in young stellar evolution: For the two diskless brown dwarfs, TWA-26 and TWA-29, we determine the stellar parameters and we study their chromospheric emission line spectrum. For the two accreting brown dwarfs, TWA-27 and TWA-28, we estimate the mass accretion rates from empirical correlations between emission line luminosities and the accretion luminosity.
130 - Aleks Scholz 2011
FU Tau A is a young very low mass object in the Taurus star forming region which was previously found to have strong X-ray emission and to be anomalously bright for its spectral type. In this study we discuss these characteristics using new informati on from quasi-simultaneous photometric and spectroscopic monitoring. From photometric time series obtained with the 2.2m telescope on Calar Alto we measure a period of ~4d for FU Tau A, most likely the rotation period. The short-term variations over a few days are consistent with the rotational modulation of the flux by cool, magnetically induced spots. In contrast, the photometric variability on timescales of weeks and years can only be explained by the presence of hot spots, presumably caused by accretion. The hot spot properties are thus variable on timescales exceeding the rotation period, maybe due to long-term changes in the accretion rate or geometry. The new constraints from the analysis of the variability confirm that FU Tau A is affected by magnetically induced spots and excess luminosity from accretion. However, accretion is not sufficient to explain its anomalous position in the HR diagram. In addition, suppressed convection due to magnetic activity and/or an early evolutionary stage need to be invoked to fully account for the observed properties. These factors cause considerable problems in estimating the mass of FU Tau A and other objects in this mass/age regime, to the extent that it appears questionable if it is feasible to derive the Initial Mass Function for young low-mass stars and brown dwarfs.
86 - M. Koutoulaki 2019
RW Aur A is a CTTS that has suddenly undergone three major dimming events since 2010. We aim to understand the dimming properties, examine accretion variability, and derive the physical properties of the inner disc traced by the CO ro-vibrational emi ssion at NIR wavelengths (2.3 mic). We compared two epochs of X-Shooter observations, during and after the dimming. We modelled the rarely detected CO bandhead emission in both epochs to examine whether the inner disc properties had changed. The SED was used to derive the extinction properties of the dimmed spectrum and compare the infrared excess between the two epochs. Lines tracing accretion were used to derive the mass accretion rate in both states. The CO originates from a region with physical properties of T=3000 K, N$_{CO}$=1x10$^{21}$ cm$^{-2}$ and vsini=113 km/s. The extinction properties of the dimming layer were derived with the effective optical depth ranging from teff 2.5-1.5 from the UV to the NIR. The inferred mass accretion rate Macc is $1.5x 10^{-8}$ Msun/yr and $sim 2x 10^{-8}$ Msun/yr after and during the dimming respectively. By fitting the SED, additional emission is observed in the IR during the dimming event from dust grains with temperatures of 500-700K. The physical conditions traced by the CO are similar for both epochs, indicating that the inner gaseous disc properties do not change during the dimming events. The extinction curve is flatter than that of the ISM, and large grains of a few hundred microns are thus required. When we correct for the observed extinction, Macc is constant in the two epochs, suggesting that the accretion is stable and therefore does not cause the dimming. The additional hot emission in the NIR is located at about 0.5 au from the star. The dimming events could be due to a dust-laden wind, a severe puffing-up of the inner rim, or a perturbation caused by the recent star-disc encounter.
With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: to derive the Li abundance for ~90% of known cla ss II stars in the Lupus I, II, III, IV clouds; to perform chemical tagging of a region where few Fe abundance measurements have been obtained in the past, and no determination of the Ba content has been done up to now. We also investigated possible Ba enhancement, as this element has become increasingly interesting in the last years following the evidence of Ba over-abundance in young clusters, the origin of which is still unknown. Using X-shooter@VLT, we analyzed the spectra of 89 cluster members, both class II and III stars. We measured the strength of the Li line and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also measured the Fe and Ba abundances using the spectral synthesis and the code MOOG. The veiling contribution was taken into account for all three elements. We find a dispersion in the strength of the Li line at low Teff and identify three targets with severe Li depletion. The nuclear age inferred for these highly Li-depleted stars is around 15 Myr, which exceeds the isochronal one. As in other star-forming regions, no metal-rich members are found in Lupus, giving support to a recent hypothesis that the Fe abundance distribution of most of the nearby young regions could be the result of a common and widespread star formation episode involving the Galactic thin disk. We find that Ba is over-abundant by ~0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this Ba abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar parameters, stellar activity, and accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا