ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard ellipses: Equation of state, structure and self-diffusion

91   0   0.0 ( 0 )
 نشر من قبل Wensheng Xu Postdoc
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an event-driven molecular dynamics study for hard ellipses and assess the effects of aspect ratio and area fraction on their physical properties. For state points in the plane of aspect ratio (k=1-9) and area fraction (phi=0.01-0.8), we identify three different phases, including isotropic, plastic and nematic states. The equation of state (EOS) is shown for a wide range of aspect ratios and is compared with the scaled particle theory (SPT) for the isotropic states. We find that SPT provides a good description of the EOS for the isotropic phase of hard ellipses. At large fixed phi, the reduced pressure p increases with k in both the isotropic and the plastic phases, and interestingly, its dependence on k is rather weak in the nematic phase. We rationalize the thermodynamics of hard ellipses in terms of particle motions. The plastic crystal is shown to form for aspect ratios up to k=1.4, while appearance of the stable nematic phase starts approximately at k=3. We quantitatively determine the locations of the isotropic-plastic (I-P) transition and the isotropic-nematic (I-N) transition by analyzing the bond-orientation correlations and the angular correlations, respectively. As expected, the I-P transition point is found to increase with k, while a larger k leads to a smaller area fraction where the I-N transition takes place. Moreover, our simulations strongly support that the two-dimensional nematic phase in hard ellipses has only quasi-long-range orientational order. The self-diffusion of hard ellipses is further explored and connections are revealed between the structure and the self-diffusion. We discuss the relevance of our results to the glass transition in hard ellipses. Finally, the results of the isodiffusivity lines are evaluated for hard ellipses and we discuss the effect of spatial dimension on the diffusive dynamics of hard ellipsoidal particles.



قيم البحث

اقرأ أيضاً

We present an event-driven molecular dynamics study of glass formation in two-dimensional binary mixtures composed of hard disks and hard ellipses, where both types of particles have the same area. We demonstrate that characteristic glass-formation b ehavior appears upon compression under appropriate conditions in such systems. In particular, while a rotational glass transition occurs only for the ellipses, both types of particles undergo a kinetic arrest in the translational degrees of freedom at a single density. The translational dynamics for the ellipses is found to be faster than that for the disks within the same system, indicating that shape anisotropy promotes the translational motion of particles. We further examine the influence of mixtures composition and aspect ratio on the glass formation. For the mixtures with an ellipse aspect ratio of $k=2$, both translational and rotational glass transition densities decrease with increasing the disk concentration at a similar rate and hence, the two glass transitions remain close to each other at all concentrations investigated. By elevating $k$, however, the rotational glass transition density diminishes at a faster rate than the translational one, leading to the formation of an orientational glass for the ellipses between the two transitions. Our simulations imply that mixtures of particles with different shapes emerge as a promising model for probing the role of particle shape in determining the properties of glass-forming liquids. Furthermore, our work illustrates the potential of using knowledge concerning the dependence of glass-formation properties on mixtures composition and particle shape to assist in the rational design of amorphous materials.
221 - M. Lopez de Haro , A. Santos , 2008
A simple equation of state for hard disks on the hyperbolic plane is proposed. It yields the exact second virial coefficient and contains a pole at the highest possible packing. A comparison with another very recent theoretical proposal and simulation data is presented.
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co nsistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxters model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the $mu$ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the $mu$ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
We apply RISM (Reference Interaction Site Model) and PRISM (polymer-RISM) theories to calculate the site-site pair structure and the osmotic equation of state of suspensions of circular or hexagonal platelets (lamellar colloids) over a range of ratio s of the particle diameter over thickness. Despite the neglect of edge effects, the simpler PRISM theory yields results in good agreement with the more elaborate RISM calculations, provided the correct form factor, characterizing the intramolecular structure of the platelets, is used. The RISM equation of state is sensitive to the number of sites used to model the platelets, but saturates when the hard spheres, associated with the interaction sites, nearly touch; the limiting equation of state agrees reasonably well with available simulation data for all densities up to the isotropic-nematic transition. When properly scaled with the second virial coefficient, the equations of state of platelets with different aspect ratios nearly collapse on a single master curve.
Many experiments in recent years have reported that, when exposed to their corresponding substrate, catalytic enzymes undergo enhanced diffusion as well as chemotaxis (biased motion in the direction of a substrate gradient). Among other possible mech anisms, in a number of recent works we have explored several passive mechanisms for enhanced diffusion and chemotaxis, in the sense that they require only binding and unbinding of the enzyme to the substrate rather than the catalytic reaction itself. These mechanisms rely on conformational changes of the enzyme due to binding, as well as on phoresis due to non-contact interactions between enzyme and substrate. Here, after reviewing and generalizing our previous findings, we extend them in two different ways. In the case of enhanced diffusion, we show that an exact result for the long-time diffusion coefficient of the enzyme can be obtained using generalized Taylor dispersion theory, which results in much simpler and transparent analytical expressions for the diffusion enhancement. In the case of chemotaxis, we show that the competition between phoresis and binding-induced changes in diffusion results in non-trivial steady state distributions for the enzyme, which can either accumulate in or be depleted from regions with a specific substrate concentration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا