ﻻ يوجد ملخص باللغة العربية
This is the third revision. We study bases of Pfaffian systems for $A$-hypergeometric system. Grobner deformations give bases. These bases also give those for twisted cohomology groups. For hypergeometric system associated to a class of order polytopes, these bases have a combinatorial description. The size of the bases associated to a subclass of the order polytopes have the growth rate of the polynomial order. Bases associated to two chain posets and bouquets are studied.
We give two efficient methods to derive Pfaffian systems for A-hypergeometric systems for the application to the holonomic gradient method for statistics. We utilize the Hilbert driven Buchberger algorithm and Macaulay type matrices in the two methods.
We will introduce a modified system of A-hypergeometric system (GKZ system) by applying a change of variables for Groebner deformations and study its Groebner basis and the indicial polynomials along the exceptional hypersurface.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi
Here we present some compliments to theorems of Gerard and Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the most known results concern completely integrable systems with non
HYPERDIRE is a project devoted to the creation of a set of Mathematica-based programs for the differential reduction of hypergeometric functions. The current version allows for manipulations involving the full set of Horn-type hypergeometric functions of two variables, including 30 functions.